Sarcasm detection for sentiment analysis:

From linguistic to machine learning approaches

 \odot TM "The Simpsons" 21st Century Fox and its related companies.

윤수원 서울시립대학교

Structure of Lecture

- **1. Sentiment Analysis**
- 2. Linguistic Analysis of Senti-words and Sarcasm
- **3. Machine Learning approaches for Sarcasm detection**

Structure of Lecture

1. Sentiment Analysis

2. Linguistic Analysis of Senti-words and Sarcasm

3. Machine Learning approaches for Sarcasm detection

Definition of sentiment analysis

- Sentiment analysis is a natural language processing (NLP) technique.
- It involves the use of computational methods to analyze the emotional tone expressed in a piece of text, such as a review, comment, or social media post.
- The main objective of sentiment analysis is to identify whether the expressed sentiment is **positive**, **negative**, or neutral.

How is Sentiment Analysis Possible?

 The text is analyzed for the presence of specific words, phrases, or linguistic patterns that indicate the writer's emotions or attitude towards a particular topic, product, service, or event.

Common types of indicators

Types of Sentiment Analysis

- **Document-level analysis** determines the overall sentiment of the document.
- Sentence-level analysis examines sentiments within each sentence.
- Aspect-based analysis focuses on specific aspects mentioned in the text.
- Entity-level analysis identifies sentiments towards specific targets.
- **Comparative analysis** compares sentiments between different entities or aspects, providing insights into relative preferences.

Why Conduct Sentiment Analysis?

- The insights gained from sentiment analysis can be valuable for making data-driven decisions, such as improving customer satisfaction and identifying areas for improvement or intervention.
- Sentiment analysis is widely used in marketing, customer service, market research, and social media monitoring, among other fields.

Example

Fragrance-1 (Lavender)

Fragrance-1 (Rose)

Fragrance-1 (Lemon)

negative (91%))

Sentiment Analysis Using Python, Analytics Vidhya https://www.analyticsvidhya.com/blog/2022/07/sentiment-analysis-using-python/

- Fragrance-1 (Lavender) has highly positive reviews.
- Fragrance-2 (Rose) happens to have a neutral outlook.
- Fragrance-3 (Lemon) has an overall negative sentiment.

Ways to Perform Sentiment Analysis in Statistics Programs/Languages

- **Python** with NLTK (Natural Language Toolkit)
 - Python provides powerful libraries like NLTK that offer tools for text processing, tokenization, and sentiment analysis.
- **R** with SentimentAnalysis and TextMining Packages
 - R programming language has packages like
 SentimentAnalysis and TextMining that enable sentiment analysis on text data.
- Java with Stanford NLP Library
 - The Stanford Natural Language Processing (NLP) library offers Java-based tools for sentiment analysis tasks.

Improvement methods

• Sarcasm and Irony

 Contextual analysis may be needed to identify sarcastic or i ronic statements, where the literal meaning is different fro m the intended sentiment.

Contextual Clues

 Understanding the overall context of the text can help in re cognizing sentiment, as certain words or phrases may have different connotations depending on the context.

Data source: https://www.gutenberg.org

Pre-processing: tedious, technical, but unavoidable, necessary task. (Some data scientists jobs are mostly about pre-processing.)

Pre-processing: tedious, technical, but unavoidable, necessary task. (Some data scientists jobs are mostly about pre-processing.)

Summary of pre-processing and sentiment analysis in R code

- 1. Data download in R code: Romeo and Juliet (dplyr's tibble format, cf. data.frame)
- 2. Data pre-processing: remove auxiliary texts & tokenize
- 3. Break down sentences to words and remove stop words
- 4. Assign sentiment (positive/negative/neutral) for each word
- 5. Raw sentiment score for each sentence (# positive/negative words)

<pre>> rnj_sentiment_count</pre>								
	sentenceID	n.pos	n.neg	pos	neg			
1:	1	0	0	FALSE	FALSE			
2:	2	0	0	FALSE	FALSE			
3:	3	0	0	FALSE	FALSE			
4:	4	0	0	FALSE	FALSE			
5:	5	0	0	FALSE	FALSE			
3642:	3642	1	0	TRUE	FALSE			
3643:	3643	0	1	FALSE	TRUE			
3644:	3644	0	1	FALSE	TRUE			
3645:	3645	0	0	FALSE	FALSE			
3646:	3646	0	1	FALSE	TRUE			

Optional steps

- 6. Conversion to data.table format (data.table package)
- 7. Add rows for neutrals by inner join
- 8. Assign zero score on neutral sentences
- 9. Identify positive / negative sentences
- 10. Generate hypothetical true sentiments
 - of sentences (10% flip)

Pre-processing: tedious, technical, but unavoidable, necessary task. (Some data scientists jobs are mostly about pre-processing.)

Summary of pre-processing and sentiment analysis in R code

- 1. Data download in R code: Romeo and Juliet (dplyr's tibble format, cf. data.frame)
- 2. Data pre-processing: remove auxiliary texts & tokenize
- 3. Break down sentences to words and remove stop words
- 4. Assign sentiment (positive/negative/neutral) for each word
- 5. Raw sentiment score for each sentence (# positive/negative words)

> rnj_	_sentiment_d	count			
	sentenceID	n.pos	n.neg	pos	neg
1:	1	0	0	FALSE	FALSE
2:	2	0	0	FALSE	FALSE
3:	3	0	0	FALSE	FALSE
4:	4	0	0	FALSE	FALSE
5:	5	0	0	FALSE	FALSE
3642:	3642	1	0	TRUE	FALSE
3643:	3643	0	1	FALSE	TRUE
3644:	3644	0	1	FALSE	TRUE
3645:	3645	0	0	FALSE	FALSE
3646:	3646	0	1	FALSE	TRUE

Sentiment	condition	pos	neg	Count	%
Positive	#pos > #neg	Т	F	551	15.1
Negative	#pos < #neg	F	Т	853	23.4
Neutral	#pos = #neg	F	F	2242	61.5

Total 3646 sentences

Act III, Scene i.

Mercutio curses both the Capulets and Montagues when he dies

<ROMEO>

Courage, man; the hurt cannot be much.

<MERCUTIO>

No, 'tis not so deep as a well, nor so wide as a church door, but 'tis enough, 'twill serve. Ask for me tomorrow, and you shall find me a grave man. I am peppered, I warrant, for this world. A plague o' both your houses. Zounds, a dog, a rat, a mouse, a cat, to scratch a man to death. A braggart, a rogue, a villain, that fights by the book of arithmetic!—Why the devil came you between us? I was hurt under your arm.

<u>Q</u>: Changes in sentiment? How much? How significant?

Subset #1: 1st -1734th sentences Subset #2: 1735th-3646th sentences

Q: Changes in sentiment? How much? How significant?

Subset #1: 1st -1734th sentences Subset #2: 1735th-3646th sentences

Negative sentiment increases and positive sentiment decreases, significantly.

A: Two-sample Binomial tests (normal approximation, two-sides)

Statistic	Prob. of	Prob. of	Reject the null since z-stat is too extreme
	Negative	Positive	Theoretical distribution of Z-statistics
\hat{p}_1	0.189	0.170	Threshold
\hat{p}_2	0.275	0.134	P-value = 5%
$\hat{p}_2 - \hat{p}_1$	0.085	-0.036	5-
Z-statistic	6.085	-3.051	
P-value	1.17 ×10 ⁻⁹	0.0023	Smaller p-value Reject If z-stat Reject If z-stat p-value Reject If z-stat Reject If z-stat p-value Reject If z-stat p-

Q: Is this sentiment classification model good?

							\frown	
> rnj_	_sentiment_d	count						
	sentenceID	n.pos	n.neg	pos	neg	true.pos	true.neg	
1:	1	0	0	FALSE	FALSE	FALSE	FALSE	
2:	2	0	0	FALSE	FALSE	FALSE	FALSE	
3:	3	0	0	FALSE	FALSE	FALSE	FALSE	
4:	4	0	0	FALSE	FALSE	FALSE	FALSE	
5:	5	0	0	FALSE	FALSE	FALSE	FALSE	
3642:	3642	1	0	TRUE	FALSE	TRUE	FALSE	
3643:	3643	0	1	FALSE	TRUE	TRUE	FALSE	Prediction error
3644:	3644	0	1	FALSE	TRUE	FALSE	TRUE	
3645:	3645	0	0	FALSE	FALSE	FALSE	FALSE	
3646:	3646	0	1	FALSE	TRUE	TRUE	FALSE	
Predicted True (reference)								nce)
				١	values	5	values	

Q: Is this sentiment classification model good?

Uninformative classifier: Sensitivity + Specificity = 1

Confusion matrix

Accuracy = (2743+762)/(2743+762+50+91) = 0.9613

Sensitivity = Recall = Power = True Positive Rate = 762/(762+50) = 0.9384= 1 - (Type-II error) = 1 - (False Negative Rate) = 1 - 0.0616

Specificity = True Negative Rate = 2743/(2743+91) = **0.9679** = 1 - (Type-I error) = 1 – (False Positive, Rate) = 1 - 0.0321

This "Positive" means "Negative sentiment", not "Non-negative sentiment"

Demonstration of Analysis with R

Popular Sentiment Lexicon Database for English

SenticNet Helping machines to learn, feverage, love

SocialSent (Hamilton et al., 2016)

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon

Structure of Lecture

- **1. Sentiment Analysis**
- 2. Linguistic Analysis of Senti-words and Sarcasm
- **3. Machine Learning approaches for Sarcasm detection**

Recall: Improvement methods

• Sarcasm and Irony

 Contextual analysis may be needed to identify sarcastic or ironic statements, where the literal meaning is different from the intended sentiment.

Contextual Clues

 Understanding the overall context of the text can help in recognizing sentiment, as certain words or phrases may have different connotations depending on the context.

Q: Why sarcasm?

Q: Why sarcasm?

https://houseofrodan.com/products/sarcasm-is-my-only-defense-t-shirt-1?variant=37530524090524 https://m.blog.naver.com/syette828/221168828491

Q: How to detect sarcasm?

https://www.huffpost.com/entry/why-sarcasm-is-so-great_b_7887342

Q: How to detect sarcasm?

https://www.pinterest.com/pin/295126581803212247/

Q: How to detect sarcasm?

A1: Linguistic cues

- I. Senti-words in Korean: racial slurs
- 1. The meaning of racial slurs (Yoon 2015)
- The expressive dimension of slurs
- (1) That *bastard* Frederic is famous.
- (2) Ku ppalkayngi nom-un yumyenghay. that commie.neg.att jerk.neg.att-Top famous 'That commie jerk is famous.'

(1) independence.

• Expressive items do not participate in denial because they are not part of the descriptive meaning (McCready 2010)

A: Ku-nun kkamtwungi-ya.
he-Top black.person.neg.att(=nigger)-Decl
'He is a nigger.'
B: Ani-ya.
not-Decl
'That's not true.'
≠ Hukin-un nappuci-anh-a.
black.people-Top bad-Neg-Decl
'Black people are not bad.'

Con-un ku-ka ppalkayngi-la-nunkesul al-koiss-ta. John-Top he-Nom commie.**neg.att**-be-C know-Asp-Decl 'John knows that he is a commie.' But John respects the N. Korean. #But I respect the N. Korean. • Certain racial slurs exhibit quite systematic variations in terms of the negative attitude

(22) The expressive index (EI) I for 'black people' in Korean

a. hukin: [-1,1]: a neutral descriptive term, 'black people'
b. hukhyeng: [0,1]: a rather friendly positive term, 'lit. black brother', 'afro bro'
c. kemtwungi: [-1,0]: a weak negative term, 'lit. darkie'
d. kkamtwungi: [-1,-.5]: a strong negative term, 'lit. blackie', 'nigger'
Compatibility Condition Model (CCM; Yoon 2015)

Lexical Category 2

Evidence 1: compatibility condition in Korean

a. Kunye-nun 🖌 alumtawun /# phyengpemhan /# hyungchukhan (26)she-TOP beautiful / normal / hideous cathay-lul tulenayss-ta. figure.POS-ACC revealed-DECL b. Kunye-nun *M*alumtawun / *M*phyengpemhan / *M*hyungchukhan beautiful she-TOP / normal / hideous mosup-ul tulenayss-ta. figure.NEU-ACC revealed-DECL c. Kunye-nun #alumtawun / #phyengpemhan / ₩hyungchukhan she-TOP beautiful / hideous / normal molkol-ul tulenayss-ta. figure.NEG-ACC revealed-DECL 'She revealed a beautiful/normal/hideous figure.' (Giannakidou and Yoon 2011: 645, (67))

Evidence 2: compatibility condition in Korean

Table 1

The compatibility of ethnic slurs and expressive nouns.

epithets for 'guy'	slurs				
	ppalkayngi 'commie' kkamtwungi 'nigger/blackie' [-1,5]	<i>kemtwungi</i> 'darkie' [–1,0]	hukin 'black people' [-1,1]	hukhyeng 'black brother' [0,1]	
saykki 'bastard' [-1,5] nom,casik 'jerk' [-1,0] namca 'man/guy' [-1,1] ssi 'Mr./Ms.' [0,1] pwun, nim 'sir' [.5,1]	high compatibility mid compatibility low compatibility incompatibility			_	

Table 6

Co-occurrences of slurs and expressive nouns in Korean National Corpus The Sejong Corpus (results attained by the search program the kkokkoma).

epithets for 'guy'	slurs				
	ppalkayngi 'commie', kkamtwungi 'blackie/nigger' [–1,–.5]	kemtwungi 'darkie' [–1,0]	hukin 'black person' [-1,1]	hukhyeng 'black brother' [0,1]	
saykki 'bastard' [-1,5]	36	0	0	0	
nom/casik 'jerk' [-1,0]	13	2	0	0	
namca 'guy' sonyen 'boy' [-1,1]	0	0	11	0	
ssi 'Mr./Ms.' [0,1]	0	0	0	0	
pwun, nim'sir' [.5,1]	0	0	0	0	
total occurrences of slurs	257	80	32	612	

Evidence 3: compatibility condition in Korean

Table 2

Compatibility of slurs and case markers.

case markers	slurs			
	ppalkayngi 'commie' kkamtwungi 'nigger/blackie' [–1,–.5]	kemtwungi 'darkie' [–1,0]	hukin 'black person' [-1,1]	hukhyeng 'black brother' [0,1]
ttawi-ka 'Nom.ANTI.HON' ttawi-eykey 'Dat.ANTI.HON'[-1,5]	high compatibility	mid compatibility		
ka 'Nom.NEU' eykey 'Dat.NEU' [-1,1]	low compatibility			
kkeyse 'Nom.HON' kkey 'Dat.HON' [.5,1]	incompatibility			

Evidence 4: compatibility condition in Korean

Table 3

Compatibility of slurs and (anti-)honorific markers.

(anti-)honorific markers	slurs			
	ppalkayngi 'commie' kkamtwungi 'nigger/blackie' [–1,–.5]	kemtwungi 'darkie' [-1,0]	hukin 'black person' [-1,1]	hukhyeng 'black brother' [0,1]
-peli 'NEG.ATT' [-1,5] ø 'NEU.ATT' [-1,1] -si 'SUBJ.HON' [.5,1]	high compatibility low compatibility incompatibility	mid compatibility		

Sentiment Analysis of Taste terms

Fig. 2. Word cloud of *ssapssal* 'bitter.pos.att'+

Sentiment Analysis of Taste terms

Fig. 11. Word cloud of ssupssul 'bitter.neg.att'+

(Translation in English)+

restroom candle.stick negatively.bitter favorites tokya(proper.name) super.bitter Korea personality_bitter quickly common.name eunuch.character deadline bitter handicraft shoot.well scholarship everyone Japanese already then two.people thousand.game.money forever B.H.Park(proper.name) character.card

Sarcasm detection 1: Mismatch of positive and negative sentiments

https://www.lianedavey.com/sarcasm/

Juxtaposition of opposite attitudes? sarcasm, irony, or hyperbole

Sarcasm detection 1: Mismatch of positive and negative sentiments

- (42) a. Ppalkayngi-pwun: 6490 hits on Google search (June 27, 2014) commie.neg.att-sir.hon
 - b. Ppalkayngi-nim: 32,700 hits on Google search (June 27, 2014) commie.neg.att-sir.hon 'The (rdishonorable) commie, the (rdonorable) being.'

(43) Ne-na cal-ha sey-yo! you.anti.hon-or.anti.hon well-do subj.hon-Decl.hon 'Mind your own (_{CI}bloody) business!' Flip-flop of bipolar emotional index: strengthened emotion or intimacy

(44) That fucking bastard Burns got promoted again!(45) That's really fucking brilliant!

(46) Hiya, bitches! (to extremely close friends)

Sarcasm detection 2 : Mismatch of honorific and anti-honorific attitudes (E.H. Oh, p.c.)

Sarcasm detection 2 :

Mismatch of honorific and anti-honorific attitudes

- (1) "Oh, please, Your Highness, grace us with your infinite wisdom."
- (2) "I'm truly honored to be in the presence of the great and mighty Professor Know-It-All."
- (3) "Well, Captain Obvious, thank you for enlightening us with your profound insight."
- (4) "I bow to you, Master of Punctuality, for gracing us with your timely presence."
- (5) "Your culinary skills are truly unmatched, Chef Extraordinaire. I couldn't even tell it was takeout."

Sarcasm and Irony areas in CCM (Yoon 2015)

Sarcasm detection 3: punctuations

Single & Fabulous! vs. Single & Fabulous?

https://www.televisionofyore.com/recaps-of-sex-and-the-city/sex-and-the-city-season-2-episode-4

Sarcasm detection 3: punctuations

- (1) Well, that's just great.
- (2) Oh, of course you're right!
- (3) Brilliant! You locked us out of the car again.
- (4) You're <u>sooo</u> funny...
- (5) Oh, that's just what I needed today: more work.
- (6) Oh, I totally believe you.

Sarcasm detection 4: interjections

e.g. yeah, ah, oh

https://tenor.com/search/sarcastic-yeah-gifs https://twitter.com/ourinspiring/status/944529527648157696 https://makeameme.org/meme/oh-yeah-8jf3sy

Sarcasm detection 4: interjections

e.g. yeah, ah, oh

https://gifdb.com/gif/oh-really-sarcastic-tamar-braxton-38v4ehqlxxs78ezj.html http://www.quickmeme.com/meme/3rl87d https://makeameme.org/meme/oh-yeah-8jf3sy

Sarcasm detection 4: interjections

- (1) <u>Oh, great.</u> Another flat tire.
- (2) <u>Yeah</u>, because that's such a brilliant idea.
- (3) <u>Ah</u>, of course you're right.
- (4) <u>Yeah</u>, I totally believe that happened.
- (5) <u>Ah</u>, the wonders of bureaucracy.

Sarcasm detection 5: emoticons

https://www.facebook.com/SarcasmLol/photos/a.1533243200337792/5686346485027422/?type=3

Sarcasm detection 5: emoticons

- (1) Thanks for your help :)
- (2) Oh, you're a real genius. :|
- (3) Oh, you're sooooo funny! ;P
- (4) Sure, I believe you. -_-
- (5) Thanks for being so helpful! ;-)
- (6) Oh, I'm sure you're right. :/

Sarcasm detection 6: ML negation

Sarcasm detection 6: ML negation

(2)

Emphatic flavor of MN

- a. Around here we don't LIKE coffee-we LOVE it.
- b. She doesn't sell INsurance—she sells inSURance.
- c. I'm not HIS brother-he's MY brother!
- d. Mozart's sonatas were for piano and violin, not for violin and piano.
- e. I'm not happy with the plan, I'm ecstatic!
- f. You didn't eat some of the cookies, you ate them all!

- (3) Hallmarks of MN
- a. Metalinguistic negations are standardly used as a rejoinder to a previous utterance.
- b. There is a certain prosodic pattern commonly associated with metalinguistic negation.

1. Objection due to inappropriateness

(16) I'm *not* happy with the plan, I'm ecstatic! [English]
 (17) a. *No way* some men are chauvinists – all men are chauvinists.
 b. *Nonsense* I managed to trap two mongeese. I managed to trap two mongooses. (Drozd 2001: 56-57)

[Korean]

(19) a.*Swuni-nun yekan an yeypputa.
 Swuni-TOP ordinarily not pretty
 b. Swuni-nun yekan yeypp-ci an-h-ta. (Taytanhi yeyppu-ta.)
 Swuni-TOP ordinarily pretty not-be-DC extremely pretty-DC
 'Swuni is not ordinarily pretty.' ('She is extremely pretty.')

2. Objection due to unusuality or abnormality

(21) A: Estás um pouco preocupado? are-2SG a little worried
'Are you a little worried?' B: Estou lá/agora um pouco preocupado. am MN-marker a little worried
'I'm not a little worried, I am worried sick.'

 (20) A: Ne cokum kekcengtoy-ni? are-2SG a little worried-Q
 'Are you a little worried?' B: Cokum kekcengtoy-nyani! Kekcengtoye-cwu-keyss-e! a little worried-exclamatory.Q worried-die-will-Decl
 'T'm not a little worried, I am worried sick!' [European Portuguese]

[Korean]

3. Objection due to unidentifiability-driven non-referentiality

(22) JOHN KNOW ANSWER !part:indef! 'John knows the answer! (How could you have thought he wouldn't?)'

- (25) A: O governo vai baixar os impostos. the government goes lower the taxes 'The government is going to lower the taxes.'
 - B: a. Qual quê! which what

[European Portuguese]

[ASL]

3. Objection due to unidentifiability-driven non-referentiality

(23) A: Ce kaswu cham mesiss-ta! [Korean] that singer really cool-Decl 'That singer is really cool!' B: Mesiss-ki-nun mwusun! cool-NMLZ-Top what/which 'Lit. What/which, he's cool!' (Intended: 'He's cool, my eye!) (24) A: Ce kaswu cham mesiss-ta! that singer really cool-Decl 'That singer is really cool!' B: Mesiss-ki-nun etey! cool-NMLZ-Top where 'Lit. Where, he's cool!' (Intended: 'He's cool, my eye!)

4. Objection due to non-existence-driven non-referentiality

(33) A: He found proofs that clinched the argument. B: He found proofs that clinched the argument nothing. vai baixar os impostos. (34) A: O governo the government goes lower the taxes 'The government is going to lower taxes.' B: a. Vai nada (baixar os impostos). goes nothing lower the taxes b. Vai baixar os impostos nada. goes lower the taxes nothing 'Like hell (it is going to lower taxes)!

[English] (Bolinger 1977: 45) [European Portuguese]

4. Objection due to non-existence-driven non-referentiality

 (28) A: Ce kaswu cham mesiss-ta! that singer really cool-Decl 'That singer is really cool!'
 B: Mesiss-ki-nun kayppwul! cool-NMLZ-Top dog.horn 'Dog's horn, he's cool!'

[Korean]

5. Objection due to unworthiness or dispreference

(35)	A: You still love	me.			[English]
	B: Like hell I stil	l love you.			(Horn 1989: 402)
(36)	"Relax, pal," Ma	rk said. "Some da	ys are bet	ter than others."	
	Todd gulped his	beer and said, "Re	elax <i>my a</i>	ss. We've been doing this	crap for a month and it feels like
	I'm carrying the	load here."		(John Grisham, The Roo	ster Bar, 203) (Martins 2019:(8))
(37)	Deberías	desculparte		por tu comportamiento.	[Spanish]
	should.1SG	apologize.REFL.	1SG	for your behaviour	
	'You should apo	logize for your bel	navior.'		
	B: ¡Una mierda	voy (yo)	a discul	parme!	
	a shit	go I	to apolo	gize.REFL	
	'Like hell I will a	apologize!'			(Olza Moreno 2017: 47)
					- M

5. Objection due to unworthiness or dispreference

6. Objection due to insincerity

(44) Yeah right you ate some of the cookies. You ate all of them!

(45) A: Ce kaswu cengmal mesiss-ta! that singer really cool-Decl 'That singer is really cool!'

B: Ce kaswucengmalmesiss-nun-ke,coaha-ney!that singerreallycool-Top-NMLZlike.it-Excl'That singer is really cool?!Oh, you'd like that, do ya?'B': Ce kaswucengmalmesiss-tani,nolkoiss-ney!that singerreallycool-Exclenjoy.it-Excl'That singer is really cool?!Oh, you're enjoying that, aren't ya?'

(46) A: En réalieté, J'ai un super pouvoir. 'Actually, I have a superpower.'

B: Tu parles!

'Go on (Lit. you speak)!'

(Drozd 2001: 56-57)

[Korean]

[French]

Sarcasm detection 5: ML negation

Table 1. The genesis of Metalinguistic Negation markers (Yoon, under revision)

Six classes of	Semantic sources for	MN markers
markers		
Class 1	inappropriateness	Regular negation markers:
		Korean
Class 2	unusuality or	Emphatics markers:
	abnormality	nyani "exclamative" in Korean; la 'lit. there', agora 'lit. now' in European Portuguese
Class 3	unidentifiability-	Anti-specificity markers:
	driven non-referentiality	part:indef 'someone or other' in ASL; mwusun 'which,'etey 'where,' mwusun + depreciatives in Korean dialects; qual 'which,' qual quê 'which what,' o quê 'the what' in European Portuguese; qué ni qué + depreciatives 'what nor what' in Peninsular Spanish
Class 4	non-existence-driven	Non-existence markers:
	non-referentiality	kayppwul 'dog's horn,' nonexistent event-describing expressions (e.g. 'sounds like a ghost's peeling and eating grains', 'sounds like a dog's nibbling on grass,' 'sounds like a maki roll's side popping,' 'sounds like an earthwarm's yawning,' 'sounds like a frog's side-kicking') in Korean; nothing, nothing of the sorts in English; nada 'nothing' in European Portuguese; minga 'no/nothing' in Rioplatense Spanish
Class 5	unworthiness or	Depreciative markers:
	dispreference	the hell, like hell, my ass, my eye, bullshit, poppycock, fiddlesticks, your old man, like fun, like fudge, yo' mama, my foot, X shma/schma-X in English; una leche 'a blow/hit', (unas/las) narices 'a/the noses', una mierda 'a shit', los cojones 'the balls' in Spanish; uma ova 'a fish roe', o tanas (obscure meaning), o caralho/o caraças ('penis' (slang)), uma merda 'a shit' in European Portuguese; qué ni qué {narices/cojones/coño/mierda/leche} 'what nor what noses/balls/cunt/shit/blow' in Peninsular Spanish (repeated from class 3); mon oeil! 'my eye' in French; wuskiney 'laughable,' {elecwuk-ul/mangh-al/yempyeng/wulacil/ nimilel}'freezing.to.death/going.bust/epidemic/damn/damn' in Korean dialects
Class 6	insincerity	Irony markers:
		coahaney 'oh, you'd like that, do ya?', nolkoissney 'oh, you're enjoying that, aren't ya? in Korean; yeah right, yeah yeah, oh yeah in English, tu parles! 'go on (lit. you speak)' in French

Sarcasm detection 5: ML negation

Table 2. Four types of MN and six classes of MN markers

Four types of MN	Six classes of MN markers	Semantic sources for MN markers	MN markers
Type I: Appropriateness assessment MN	Class 1	inappropriateness	Regular negation markers: not, no way, nonsense in English, ci an 'not' in Korean, etc.
Type II: Emphatic denial MN	Class 2	unusuality or abnormality	Emphatics markers: lá 'lit. there' in European Portuguese, nyani 'exclamative' in Korean, etc.
	Class 3	unidentifiability-driven non-referentiality	Anti-specificity markers: part:indef 'someone or other' in ASL, mwusun 'which' in Korean, etc.
Type III: Negative emphatic denial MN	Class 4	non-existence-driven non-referentiality	Non-existence markers: nothing in English, nada in Spanish, kayppwul 'dog's horn' in Korean, etc.
	Class 5	unworthiness or dispreference	Depreciative markers: the hell, like hell, X shma/schma-X in English, wuskiney 'laughable,' elecwuk- ul 'freezing to death' in Korean, etc.
Type IV: Inory MN	Class 6	insincerity	Irony markers: yeah right in English, coahaney 'oh, you'd like that, do ya?', nolkoissney 'oh, you're enjoying that, aren't ya?' in Korean, tu parles! 'go on' in French, etc.

Q: How to detect sarcasm?

A1: Linguistic cues A2: Contextual cues: Amazon rating

Research example: Oh & Yoon (in progress)

DETECTING SARCASM IN MOVIE AND TV SHOW REVIEWS

Research example: Oh & Yoon (in progress)

Introduction : Detecting Sarcasm in Amazon Movies and TV Reviews

- Using a dataset of Amazon Movies and TV Reviews
- Python's Transformers library will be used to conduct sentiment analysis on the reviews.
- If reviews with a rating score under 3 are labelled as positive, they will be categorized as potentially sarcastic.
- Using tokenization to analyze the word frequency in these reviews.
- · The goal is
 - to identify which words or phrases are most commonly associated with sarcasm in Movies and TV reviews
 - to provide insights into the expression of sarcasm in online reviews more broadly.
Overview of the dataset

```
json data
 { 'overall': 5.0,
  'vote': '3',
  'verified': True,
  'reviewTime': '02 18, 2013',
  'reviewerID': 'A2VHSG6TZHU10B',
  'asin': '0001527665',
  'style': {'Format:': ' Amazon Video'},
  'reviewerName': 'Ken P',
  'reviewText': 'Having lived in West New Guinea (Papua) during the ti
me period covered in this video, it is realistic, accurate, and convey
s well the entrance of light and truth into a culture that was for cen
turies dead to and alienated from God.',
  'summary': 'Realistic and Accurate',
  'unixReviewTime': 1361145600},
```

Methods and Techniques

Obtained Results

results_df

	label	score	rating	review
0	Positive	0.891905	1.0	It is a shame that a kids movie has God d*** u
1	Positive	0.999997	1.0	IT'S AMAZING THAT THEY WOULD RELEASE A MOVIE A
2	Positive	0.991348	1.0	Who pays \$11,000 for a silly cartoon? Great w
3	Positive	0.999964	1.0	It was horrible. Hard target 2 is way better
4	Positive	0.986253	2.0	I bought it since critics rated it as the best
635	Positive	0.999999	2.0	I watched this based on the other reviews - am
636	Positive	1.000000	1.0	The fact this movie won picture of the year sh
637	Positive	0.572173	1.0	Beautiful scenery and a good actor wasted. I
638	Positive	0.999550	2.0	I cannot believe ice cube agreed to play this
639	Positive	0.844736	2.0	The movie "Outsourced" was wonderful! This si

Data Preprocessing

> bounded_sentences %>% filter(between(sentiment,0,1)) -> pos_result

> head(pos_result)

											τεχτ
1:	If you are	a Christian	family and	want to kee	ep the eyes a	and ears of	your little	ones pure, y	/ou will wa	nt to skip	this movie.
2:			The Sound	of music, Fi	ddler on the	e roof, The	music man,	would all be	better alt	ernatives	to this one.
3:		it's AMAZING	THAT THEY	WOULD RELEA	ASE A MOVIE A	AS BAD AS TH	HIS AND IT'S	TRUELY AMAZ	ING THAT DE	NZEL WOULD	STAR IN IT.
4:								Great	way to get	people to	look at it.
5:											Nice Joke.
6:									Hard	target 2 i	s way better
	element_id	<pre>sentence_id</pre>	word_count	sentiment	characters						
1:	1	4	26	0.03922323	124						
2:	1	5	19	0.45883147	101						
3:	2	1	22	0.18122061	113						
4:	3	2	9	0.16666667	38						
5:	3	3	2	0.77781746	10						
6:	4	2	5	0.24596748	27						

L and

Word Bar Chart

Word cloud plot

Extraction of Sentences with 'good'

> filtered_sentences <- pos_result\$text[sapply(pos_result\$text, function(sentence) grepl("good", sentence))]
> print(filtered_sentences)

- [1] "It was so good and insightful."
- [2] "thru his machine for a good clean up."
- [3] "Well, it was good for what it was."
- [4] "The car chase and the cops are about as good as a good ole Keystone Cops comedy."
- [5] "The fights are good and exciting, but the whole film itself is forgettable."
- [6] "kind of good in a cultish sort of way"
- [7] "How this got so many good reviews is beyond us."
- [8] "Delivery and quality of the picture was very good."
- [9] "The Blu-Ray looks pretty good and"
- [10] "Perhaps it was a good film in it's day."
- [11] "Very good movie, watched it with our daughters and granddaughters!"
- [12] "Paltrow did a good acting job, and looked stunning."

[13] "The NWO coming back was pretty good, but predictable, and the main event was just half an our full of chest slaps, with below average wresling."

- [14] "Soooo bad and sooo good."
- [15] "this film isn't one of Eddie's best or even that good or even pretty good."
- [16] "nobody i know talks about this film and with good reason it's not something you choose to remember."
- [17] "If you liked the movie, good for you."
- [18] "I thought that Tom and his Karate were very good."
- [19] "A laugh now and than is good."
- [20] "Danial Day Lewis's version was really good ."

Extraction of Sentences with 'great'

> filtered_sentences1

[1] "happy with all orders - packaging was great no complaints here"

[2] "Get the Secret instead - it is great!"

[3] "The only positive thing about this movie is that it serves as a great reminder that anyone who came of age in the 80's and yearns for that simple era needs to be ignored as the simpleton they are."

[4] "The scenery and sets were great and Ms Hepburns costumes were awesome."

[5] "A classic movie setting a new genre by Mike Nichols and introducing a new talent Dustin Hoffman,Still g reat to see Anne Bancroft"

[6] "The talent is great, no doubt."

[7] "It's a great looking film...."

[8] "RICHARD MATHESON great author."

[9] "I would recommend these other great foreign martial arts movies with a better storyline such as:"

[10] "Otherwise, it's a great cure for insomnia."

[11] "The special effects are nice, and Jude Law gives a great performance, but they weren't enough to overco me the mind numbing effects of the story itself."

[12] "ok\" than a great revelation."

[13] "He is a great actor!"

[14] "The cast was great."

[15] "i started the pregnancy with great cardiovascular health due to running, so i wanted to gain some stren gth..."

[16] "My Review is on the Dawn of the Dead (Unrated Director's Cut) [Blu-ray] (2004), great movie, looks good in HD."

[17] "is just as said to be great"

[18] "The stars are great as expected."

[19] "Story was great - loved it."

[20] "Otherwise great story to reinforce family values"

Extraction of Sentences with 'better'

> filt e))]	<pre>cered_sentences2 <- pos_result\$text[sapply(pos_result\$text, function(sentence) grepl("better", sentenc</pre>
>	
> filt	:ered_sentences2
[1]	"The Sound of music, Fiddler on the roof, The music man, would all be better alternatives to this one."
[2]	"Hard target 2 is way better"
[3]	"a very bad print the vhs tape looks much better"
[4]	"The description seemed better than the movie."
[5]	"I remember seeing this as a kid and it was a lot better."
[6]	"Some people love this one and I expected better than it delivered."
[7]	"Fine script and far better than usual Hollywood garbage."
[8]	"At least it was better than this!"
[9]	"Part 1&2 were better than this."
[10]	"Was much better when I was 11 years old."
[11]	"I watch all the series and they were much better than this long movie."
[12]	"The franchise got better with each sequel."
[13]	"Naomi Watts looked better with shorter hair in Peter Jackson's KING KONG."
[14]	"Clive Owens looked better in KING ARTHUR."
[15]	"This movie looks better sitting in it's DVD case than playing in your DVD player."
[16]	"My recollections of this movie were far better than the current realty."
[17]	"I was real dissapointed with it and thought it could've been much much better than it was."
[18]	"I enjoy Ben Affleck's acting but he can do so much better than this drivel."
[19]	"the whole found footage thang was done much better in, $\"cannibal holocaust.""$

[20] "I liked the original digi mon better."

Findings:

- Words like "good," "great," and "better" exhibited varying degrees of sarcasm in reviews.
 - The word "good" had both positive and sarcastic connotations, often used in a pasttense context.
 - "Great" was generally positive but could be used sarcastically with specific expressions including negation.
 - "Better" frequently appeared in sarcastic and negatively oriented evaluations.

https://tenor.com/search/great-sarcasm-gifs https://tenor.com/search/sarcastic-good-job-gifs https://oladino.com/product/never-better-skeleton-funny-dead-inside-sarcastic-svg-cricut-file/

https://tenor.com/search/great-sarcasm-gifs https://tenor.com/view/fantastic-thats-great-sarcastic-sarcasm-shrugging-it-off-gif-13761565

Q: How to detect sarcasm?

A1: Linguistic cues A2: Contextual cues: Amazon rating A3: Machine Learning approaches

Machine Learning

Decision trees for dative data

Machine Learning

Random Forest

- Generate multiple (smaller) decision trees and keep the average
- Ensemble machine learning based on wisdom of crowds
- Avoid overfitting for better prediction performance

Machine Learning

Deep learning: Artificial Neural Network with multiple inner layers.

https://playground.tensorflow.org

Machine Learning approaches to Sarcasm detection

Table 3. Con	nmon feature-relate	d approaches that	: were applied for	sarcasm detecting i	in Twitter.
--------------	---------------------	-------------------	--------------------	---------------------	-------------

Algorithm	Author(s)	Sarcasm F	Sarcasm Features								
		Lexical	Stem	Pragmatic	Frequency	TF-IDF	POS	Ambiguity	Synonyms	Personality	
SVM	González-Ibánez et al. (2011)	×		×	×		×				
	Tungthamthiti et al. (2014)	×		×							
	Bouazizi and Ohtsuki (2015)	×		×							
	Ghosh et al. (2015)	×		×	×		x				
	Barbieri et al. (2015)	×			×		×	×	×		
	Signhaniya et al. (2015)	×	×				×				
	Tungthamthiti et al. (2016)	×			×		×				
Logistic regression	Kovaz et al. (2013)	×			×		×				
	Jain and Hsu (2015)	×			×						
	Abercrombie and Hovy (2016)	×					x				
	Bali and Singh (2016)	×		×			×				
Naive Bayes	Saha et al. (2017)	×	×				x				
	Das et al. (2018)	×			×						
	Parde and Nielsen (2018)	×		×	×						
Random Forest	Bouazizi and Ohtsuki (2018)	×		×			x				
	Bouazizi and Ohtsuki (2016)	×		×	×		x				
SASI	Davidov et al. (2010)	×			×						
Bootstrap ping	Riloff et al. (2013)	×					x				
MaxEnt	Ptáček et al. (2014)	×		×	×		x				
SCUBA	Rajadesingan et al. (2015)	×					×				
LbSVM	Joshi et al. (2015)	×		×							
CUE-CNN	Amir et al. (2016)	×			×		x				
GRNN	Zhang et al. (2016)	×				×					
CNN-SVM	Poria et al. (2016)	×								×	
CNN + LSTM + DNN	Ghosh and Veale (2016)	×		×	×						
Gradient Boost	Prasad et al. (2017)	×	×				×				
MIARN	Tay et al. (2018)	×									
MODEL-KEY	Ren et al. (2018)	×				×					
/BCA	Parmar et al. (2018)	×			×		×				

TF-IDF: Term Frequency-Inverse Document Frequency; SVM: Support Vector Machine; SASI: Semi-supervised Algorithm for Sarcasm Identification; MaxEnt: Maximum Entropy; SCUBA: Sarcasm Classification Using a Behavioral modeling Approach; CUE-CNN: Content and User Embedding Convolutional Neural Network; GRNN: Gated Recurrent Neural Network; CNN-SVM: Convolutional Neural Network-Support Vector Machine; LSTM: Long Short-Term Memory; DNN: Deep Neural Network; MIARN: Multi-dimensional Intra-Attention Recurrent Network; FBCA: Feature-based Composite Approach.

Common features of sarcasm detection

- 1. Lexical features: interjections and punctuation
- 2. Stemmed features
- 3. Pragmatic features: positive/negative emoticons, ToUser
- 4. Frequency-related features
- 5. TF-IDF
- 6. Part-Of-Speech (POS) taggers
- 7. Ambiguity
- 8. Synonyms
- 9. Personality

Common features of sarcasm detection

- **1. Lexical features: interjections and punctuation**
- 2. Stemmed features
- 3. Pragmatic features: positive/negative emoticons, ToUser
- 4. Frequency-related features
- 5. TF-IDF
- 6. Part-Of-Speech (POS) taggers
- 7. Ambiguity
- 8. Synonyms
- 9. Personality

https://www.reddit.com/r/tomodachilife/comments/14omhgh/when_youve_literally_helped_your_mii_successfully/?rdt=52205

https://www.reddit.com/r/tomodachilife/comments/14omhgh/when_youve_literally_helped_your_mii_successfully/?rdt=52205

THANK YOU SO MUCH

https://www.pinterest.com/pin/34128909660999666/

https://www.reddit.com/r/tomodachilife/comments/14omhgh/when_youve_literally_helped_your_mii_successfully/?rdt=52205 https://cz.pinterest.com/pin/342836590385909405/?amp_client_id=CLIENT_ID%28_%29&mweb_unauth_id=&simplified=true https://makeameme.org/meme/wow-thank-you-vxy0cd 94 https://www.teepublic.com/pin/17352828-sarcastic-thank-you

YOURSELF!

https://makeameme.org/meme/any-questions-wed

Q: Changes in sentiment? How much? How significant?

Subset #1: 1st -1734th sentences Subset #2: 1735th-3646th sentences

Statistic	Prob. of Negative	Prob. of Positive
\hat{p}_1	0.189	0.170
\hat{p}_2	0.275 🚺	0.134

A: Two-sample Binomial tests

ex) For negative sentences,

 $\begin{array}{l} p_1 = (\text{Prob. of neg. sentence in subset #1}) \\ p_2 = (\text{Prob. of neg. sentence in subset #2}) \\ p = (\text{Prob. of neg. sentence in the whole}) \\ \hat{p}_1, \hat{p}_2, \hat{p} \text{ are sample estimates for these} \end{array}$

Q: Changes in sentiment? How much? How significant?

Subset #1: 1st -1734th sentences Subset #2: 1735th-3646th sentences

Statistic	Prob. of Negative	Prob. of Positive		
\hat{p}_1	0.189	0.170		
\hat{p}_2	0.275	0.134		

A: Two-sample Binomial tests

ex) For negative sentences,

 p_1 = (Prob. of neg. sentence in subset #1) p_2 = (Prob. of neg. sentence in subset #2) p = (Prob. of neg. sentence in the whole) $\hat{p}_1, \hat{p}_2, \hat{p}$ are sample estimates for these

<u>Q: Changes in sentiment? How much? How significant?</u></u>

Subset #1: 1st -1734th sentences Subset #2: 1735th-3646th sentences

A: Two-sample Binomial tests

Statistic	Prob. of Negative	Prob. of Positive		
\hat{p}_1	0.189	0.170		
\hat{p}_2	0.275	0.134		
$\hat{p}_2 - \hat{p}_1$	0.085	-0.036		

ex) For negative sentences,

 p_1 = (Prob. of neg. sentence in subset #1) p_2 = (Prob. of neg. sentence in subset #2) p = (Prob. of neg. sentence in the whole) $\hat{p}_1, \hat{p}_2, \hat{p}$ are sample estimates for these

Q: Changes in sentiment? How much? How significant?

Subset #1: 1st -1734th sentences Subset #2: 1735th-3646th sentences

A: Two-sample Binomial tests

Statistic	Prob. of Negative	Prob. of Positive		
\hat{p}_1	0.189	0.170		
\hat{p}_2	0.275	0.134		
$\hat{p}_2 - \hat{p}_1$	0.085	-0.036		

ex) For negative sentences,

 p_1 = (Prob. of neg. sentence in subset #1) p_2 = (Prob. of neg. sentence in subset #2) p = (Prob. of neg. sentence in the whole) $\hat{p}_1, \hat{p}_2, \hat{p}$ are sample estimates for these

Does this change happen just by chance?

<u>Q</u>: Changes in sentiment? How much? How significant?

Subset #1: 1st -1734th sentences Subset #2: 1735th-3646th sentences

A: Two-sample Binomial tests (normal approximation, two-sides)

Statistic	Prob. of	Prob. of	Reject the null since z-stat is too extreme			
Julistic	Negative	Positive	n = (Prob of page contance in subset #1)			
\hat{p}_1	0.189	0.170	$p_1 = (Prob. of neg. sentence in subset #1)$ $p_2 = (Prob. of neg. sentence in subset #2)$ $p_2 = (Prob. of neg. sentence in the whole)$			
\hat{p}_2	0.275	0.134	$\hat{p}_1, \hat{p}_2, \hat{p}_3$ are sample estimates for these			
$\hat{p}_2 - \hat{p}_1$	0.085	-0.036	$H_{o}: p_{2} - p_{1} = 0$ (No change) $H: p_{2} - p_{1} \neq 0$ (Real change)			
Z-statistic	6.085	-3.051	Under H_o			
P-value	1.17 ×10 ⁻⁹	0.0023	Z-statistic = $\frac{\hat{p}_2 - \hat{p}_1}{\sqrt{\hat{p}(1 - \hat{p})(\frac{1}{N_1} + \frac{1}{N_2})}} \sim N(0, 1)$			

Q: Changes in sentiment? How much? How significant?

Subset #1: 1st -1734th sentences Subset #2: 1735th-3646th sentences

Negative sentiment increases and positive sentiment decreases, significantly.

A: Two-sample Binomial tests (normal approximation, two-sides)

Statistic	Prob. of	Prob. of	Reject the null since z-stat is too extreme
	Negative	Positive	Theoretical distribution of Z-statistics
\hat{p}_1	0.189	0.170	Threshold
\hat{p}_2	0.275	0.134	P-value = 5%
$\hat{p}_2 - \hat{p}_1$	0.085	-0.036	5-
Z-statistic	6.085	-3.051	
P-value	1.17 ×10 ⁻⁹	0.0023	Smaller p-value Reject If z-stat la in this region la in this region

Q: Changes in sentiment? How much? How significant?

Subset #1: 1st -1734th sentences Subset #2: 1735th-3646th sentences

Negative sentiment increases and positive sentiment decreases, significantly.

A: Two-sample Binomial tests (normal approximation, two-sides)

Q: Is this sentiment classification model good?

> rnj_	_sentiment_	count					
	sentenceID	n.pos	n.neg	pos	neg	true.pos	true.neg
1:	1	0	0	FALSE	FALSE	FALSE	FALSE
2:	2	0	0	FALSE	FALSE	FALSE	FALSE
3:	3	0	0	FALSE	FALSE	FALSE	FALSE
4:	4	0	0	FALSE	FALSE	FALSE	FALSE
5:	5	0	0	FALSE	FALSE	FALSE	FALSE
3642:	3642	1	0	TRUE	FALSE	TRUE	FALSE
3643:	3643	0	1	FALSE	TRUE	TRUE	FALSE
3644:	3644	0	1	FALSE	TRUE	FALSE	TRUE
3645:	3645	0	0	FALSE	FALSE	FALSE	FALSE
3646:	3646	0	1	FALSE	TRUE	TRUE	FALSE

Assume these two columns are true sentiments of sentences manually labeled by human experts.

True values

<u>Q</u>: Is this sentiment classification model good?

							\frown	
> rnj_sentiment_count								
	sentenceID	n.pos	n.neg	pos	neg	true.pos	true.neg	
1:	1	0	0	FALSE	FALSE	FALSE	FALSE	
2:	2	0	0	FALSE	FALSE	FALSE	FALSE	
3:	3	0	0	FALSE	FALSE	FALSE	FALSE	
4:	4	0	0	FALSE	FALSE	FALSE	FALSE	
5:	5	0	0	FALSE	FALSE	FALSE	FALSE	
3642:	3642	1	0	TRUE	FALSE	TRUE	FALSE	
3643:	3643	0	1	FALSE	TRUE	TRUE	FALSE	Prediction error
3644:	3644	0	1	FALSE	TRUE	FALSE	TRUE	
3645:	3645	0	0	FALSE	FALSE	FALSE	FALSE	
3646:	3646	0	1	FALSE	TRUE	TRUE	FALSE	
	Predicte					ed Tru	e (referei	nce)
	value		values	6	values			
Q: Is this sentiment classification model good?

True Predicted	Negative sentiment (event), 23%	Non-negative sentiment (no event), 77%		
Negative	762	91		
non-Negative	50	2743		

Confusion matrix

Q: Is this sentiment classification model good?

Confusion matrix					
True	Negative sentiment	Non-negative sentiment			
Predicted	(event), 23%	(no event), 77%			
Negative	762	91			
non-Negative	50	2743			

<u>Q</u>: Is this sentiment classification model good?

Confusion matrix					
True Predicted	Negative sentiment (event), 23%	Non-negative sentiment (no event), 77%			
Negative	762	91			
non-Negative	50	2743			
· · · · · · · · · · · · · · · · · · ·					

Q: Is this sentiment classification model good?

Accuracy = (2743+762)/(2743+762+50+91) = 0.9613

Q: Is this sentiment classification model good?

Accuracy = (2743+762)/(2743+762+50+91) = 0.9613

Sensitivity = Recall = Power = True Positive Rate = 762/(762+50) = **0.9384** = 1 - (Type-II error) = 1 - (False Negative Rate) = 1 - 0.0616

This "Negative" means "Non-negative sentiment", not "Negative sentiment"

Q: Is this sentiment classification model good?

Uninformative classifier: Sensitivity + Specificity = 1

Confusion matrix

Accuracy = (2743+762)/(2743+762+50+91) = 0.9613

Sensitivity = Recall = Power = True Positive Rate = 762/(762+50) = 0.9384= 1 - (Type-II error) = 1 - (False Negative Rate) = 1 - 0.0616

Specificity = True Negative Rate = 2743/(2743+91) = **0.9679** = 1 - (Type-I error) = 1 – (False Positive Rate) = 1 - 0.0321

This "Positive" means "Negative sentiment", not "Non-negative sentiment"

WITH BALANCED DATA, RIGHT?

WITH BALANCED DATA, RIGHT?

CAVEAT! "Accuracy" can mislead model performance.

ex) Model for sarcasm detection

If sarcasm appears only once out of 100 sentences, the accuracy of a model that always predicts "no sarcasm" is also 99%.

What if sarcasm appears 0.5% of the time?

WHE

Q: Is this sentiment classification model good?

> rnj_	_sentiment_	count					
	sentenceID	n.pos	n.neg	pos	neg	true.pos	true.neg
1:	1	0	0	FALSE	FALSE	FALSE	FALSE
2:	2	0	0	FALSE	FALSE	FALSE	FALSE
3:	3	0	0	FALSE	FALSE	FALSE	FALSE
4:	4	0	0	FALSE	FALSE	FALSE	FALSE
5:	5	0	0	FALSE	FALSE	FALSE	FALSE
3642:	3642	1	0	TRUE	FALSE	TRUE	FALSE
3643:	3643	0	1	FALSE	TRUE	TRUE	FALSE
3644:	3644	0	1	FALSE	TRUE	FALSE	TRUE
3645:	3645	0	0	FALSE	FALSE	FALSE	FALSE
3646:	3646	0	1	FALSE	TRUE	TRUE	FALSE

Assume these two columns are true sentiments of sentences manually labeled by human experts.

True values

<u>Q</u>: Is this sentiment classification model good?

							\frown	
> rnj_	_sentiment_d	count						
	sentenceID	n.pos	n.neg	pos	neg	true.pos	true.neg	
1:	1	0	0	FALSE	FALSE	FALSE	FALSE	
2:	2	0	0	FALSE	FALSE	FALSE	FALSE	
3:	3	0	0	FALSE	FALSE	FALSE	FALSE	
4:	4	0	0	FALSE	FALSE	FALSE	FALSE	
5:	5	0	0	FALSE	FALSE	FALSE	FALSE	
3642:	3642	1	0	TRUE	FALSE	TRUE	FALSE	
3643:	3643	0	1	FALSE	TRUE	TRUE	FALSE	Prediction error
3644:	3644	0	1	FALSE	TRUE	FALSE	TRUE	
3645:	3645	0	0	FALSE	FALSE	FALSE	FALSE	
3646:	3646	0	1	FALSE	TRUE	TRUE	FALSE	
				Pr	edicte	ed Tru	e (referei	nce)
				١	values	5	values	

Q: Is this sentiment classification model good?

True Predicted	Negative sentiment (event), 23%	Non-negative sentiment (no event), 77%		
Negative	762	91		
non-Negative	50	2743		

Confusion matrix

Q: Is this sentiment classification model good?

Confusion matrix					
True	Negative sentiment	Non-negative sentiment			
Predicted	(event) <i>,</i> 23%	(no event) <i>,</i> 77%			
Negative	762	91			
non-Negative	50	2743			

<u>Q</u>: Is this sentiment classification model good?

Confusion matrix					
True Predicted	Negative sentiment (event), 23%	Non-negative sentiment (no event), 77%			
Negative	762	91			
non-Negative	50	2743			
· · · · · · · · · · · · · · · · · · ·					

Q: Is this sentiment classification model good?

Accuracy = (2743+762)/(2743+762+50+91) = 0.9613

Q: Is this sentiment classification model good?

Accuracy = (2743+762)/(2743+762+50+91) = 0.9613

Sensitivity = Recall = Power = True Positive Rate = 762/(762+50) = **0.9384** = 1 - (Type-II error) = 1 - (False Negative Rate) = 1 - 0.0616

This "Negative" means "Non-negative sentiment", not "Negative sentiment"

Q: Is this sentiment classification model good?

Uninformative classifier: Sensitivity + Specificity = 1

Confusion matrix

Accuracy = (2743+762)/(2743+762+50+91) = 0.9613

Sensitivity = Recall = Power = True Positive Rate = 762/(762+50) = 0.9384= 1 - (Type-II error) = 1 - (False Negative Rate) = 1 - 0.0616

Specificity = True Negative Rate = 2743/(2743+91) = **0.9679** = 1 - (Type-I error) = 1 – (False Positive Rate) = 1 - 0.0321

This "Positive" means "Negative sentiment", not "Non-negative sentiment"

WITH BALANCED DATA, RIGHT?

WITH BALANCED DATA, RIGHT?

CAVEAT! "Accuracy" can mislead model performance.

ex) Model for sarcasm detection

If sarcasm appears only once out of 100 sentences, the accuracy of a model that always predicts "no sarcasm" is also 99%.

What if sarcasm appears 0.5% of the time?

MIL