Effects of Referential structure in English pronoun resolution

송지나 *홍익대학교 (jinas@hongik.ac.kr)*

> 04, 20, 2024 한국언어정보학회 월례발표대회

Goals

- How do we interpret multiple pronouns in the same clause?
- Are there any differences from how we interpret a single pronoun?
- a) Henry₁ respected Kevin₂ because he_{1/2} visited Tom.
 (One-Pronoun)
- b) Henry₁ respected Kevin₂ because he_{1/2} visited him_{2/1} (Two-Pronoun)

Differences lie in <u>referential structure -</u> whether all or only one of the preceding referents are mentioned by the pronouns

Overview

- I. Introduction (referential structure differences)
 - Independence view: anaphoric dependencies for the two different pronouns are resolved fully independently
 - **Dependence view:** resolving one of the pronominal dependencies influences the formation of the other
- II. Experiment 1 3: Multiple pronoun resolution ≠ Single pronoun resolution (offline picture-writing task)
- III. Experiment 4: Real-time processing of multiple pronoun interpretation (Webcam-based eye-tracking study)

Introduction

- Pronouns are informationally underspecified on their own
- To fully understand their meanings, we need to identify what they refer to in the previous context
- Not always straight-forward to establish a dependency relation with a previously mentioned entity
- Pronoun interpretation is guided by various factors at different levels of representation (e.g. Givon 1983; Smyth 1994; Grosz et al., 1995; Hobbs 1970)
- Previous findings are largely based on how we interpret a single pronoun in a single clause in ambiguous context.

Jane respected Mary because **she** visited **Lisa**.

Introduction

- Pronouns are informationally underspecified on their own
- To fully understand their meanings, we need to identify what they refer to in the previous context
- Not always straight-forward to establish a dependency relation with a previously mentioned entity
- Pronoun interpretation is guided by various factors at different levels of representation (e.g. Givon 1983; Smyth 1994; Grosz et al., 1995; Hobbs 1970)
- These findings are largely based on how we interpret a single pronoun in a single clause in ambiguous context.

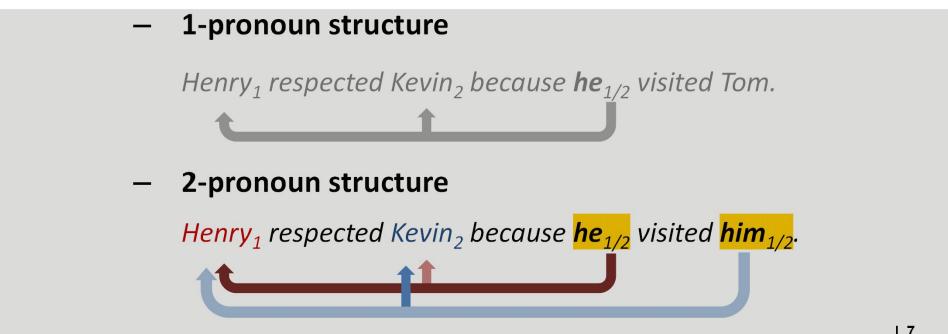
Jane respected Mary because she visited her.

How do we interpret multiple pronouns?

Background – Referential structure

- Is reference resolution of multiple pronouns different from that of a single pronoun?
- Referential structure: whether all or only one of the referents in the preceding clause are mentioned with a pronoun in the subsequent clause

1-pronoun structure


Henry₁ respected Kevin₂ because $\frac{he_{1/2}}{}$ visited Tom.

2-pronoun structure

Henry₁ respected Kevin₂ because $he_{1/2}$ visited $him_{1/2}$.

Background – Referential structure

- Is reference resolution of multiple pronouns different from that of a single pronoun?
- **Referential structure:** whether all or only one of the referents in the preceding clause are mentioned with a pronoun in the subsequent clause

Background – Referential structure


- Is reference resolution of multiple pronouns different from that of a single pronoun?
- Referential structure: whether all or only one of the referents in the preceding clause are mentioned with a pronoun in the subsequent clause

Resolving one pronominal dependency can influence on resolving the other?

1-pronoun structure

Henry₁ respected Kevin₂ because $\frac{he_{1/2}}{}$ visited Tom.

2-pronoun structure

Hypotheses – Referential structure effects

Independence view:

anaphoric dependencies constructed for the two different pronouns are resolved fully independently

II. Dependence view:

resolving one of the pronominal dependencies influences the formation of the other dependency in 2-pronoun structure

2-pronoun structure

I. Independence view

- Parallel function strategy (PFS) (e.g., Smyth, 1994; Chambers & Smyth 1998)
 A pronoun is coreferential with a preceding noun phrase occupying the same grammatical role as the pronoun.
 - Pronouns search for the best antecedent that has matching morphosyntactic features – a gender, number, person and grammatical role
 - No referential structure effects:
 1-pronoun structure = 2-pronoun structure (sbj-pronoun)

Henry₁ respected Kevin₂ because he₁ visited Tom. [1-pro]

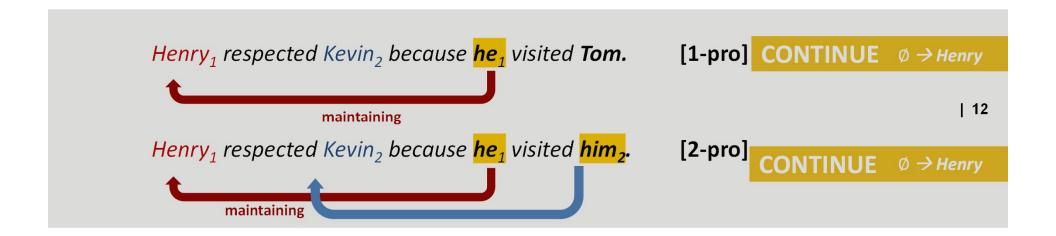
Henry₁ respected Kevin₂ because he₁ visited him₂. [2-pro]

II. Dependence view

- Centering Theory (CT) (e.g., Grosz et al., 1995; Walker et al 1998)
- Discourse-level factors (discourse coherence) guide interactions between referential dependencies from two different pronouns
- The less the salient entity changes, the more coherent the discourse

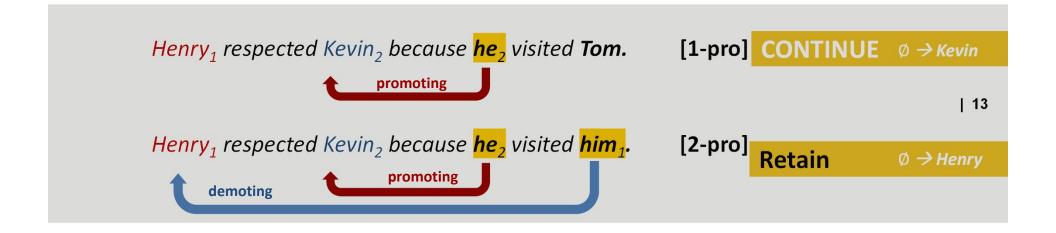
```
Most salient Subject >> Direct object >> Indirect object >> Adjuncts
```

- Pronouns are resolved so that the transition from one sentence to the next is as coherent as possible (e.g., topic maintenance)
- They are resolved in such a way that maximizes coherence of the discourse transition


```
Most coherent CONTINUE >> RETAIN >> SHIFT
```

Referential structure effects:

1-pronoun structure ≠ 2-pronoun structure


II. Dependence view

- Centering Theory (CT) (e.g., Grosz et al., 1995; Walker et al 1998)
- Discourse-level factors (discourse coherence) guide interactions between referential dependencies from two different pronouns
- Pronouns are resolved so that the transition from one sentence to the next is as coherent as possible (e.g., topic maintenance)
- Referential structure effects:
 1-pronoun st. >_{obj interpretation} 2-pronoun st.

II. Dependence view

- Centering Theory (CT) (e.g., Grosz et al., 1995; Walker et al 1998)
- Discourse-level factors (discourse coherence) guide interactions between referential dependencies from two different pronouns
- Pronouns are resolved so that the transition from one sentence to the next is as coherent as possible (e.g., topic maintenance)
- Referential structure effects:
 1-pronoun st. >_{obj interpretation} 2-pronoun st.

Experiment 1 - 3: The effects of referential structure in pronoun interpretation

Multiple pronoun resolution ≠ Single pronoun resolution?

Independence view vs. Dependence views

Exp1 – 3: Design

• Clause 1: Implicit causality (IC) verb typebias to Sbj or Obj for pronoun resolution

Henry {surprised (IC1_Sbj) / respected (IC2_obj)} Kevin Henry {cheated (IC1_Sbj) / criticized (IC2_obj)} Kevin

EXP 1&2

EXP 3

- EXP1 (Stimulus/Experiencer verb bias): IC1 Sbj M=67.4%, SD=13.6; IC2 Obj M=76.2%, SD=11.7
- EXP2 (Agent-Patient verb bias): IC1 Sbj M=67.7%, SD=9.16; IC2 Obj M=72.1%, SD=5.53
- Clause 2: Referential structure type

...because <u>he</u> daxed. [1-pro]

...because **he** daxed **Tom**. [1-pro]

...because **he** daxed **him**. [2-pro]

EXP 1

EXP 2&3

EXP 1,2&3

- Disentangles effects of syntactic parallelism from semantic parallelism
 - an *explanation* relation (*because*) for the implicit causality effects and to avoid semantic parallelism effects
 - Nonce verbs: no verb semantics

Exp1 – 3: Design

• Clause 1: Implicit causality (IC) verb type

Henry {surprised (IC1_Sbj) / respected (IC2_obj)} Kevin
Henry {cheated (IC1_Sbj) / criticized (IC2_obj)} Kevin

EXP 1&2

EXP 3

- EXP1 (Stimulus/Experiencer verb bias): IC1 Sbj M=67.4%, SD=13.6; IC2 Obj M=76.2%, SD=11.7
- EXP2 (Agent-Patient verb bias): IC1_Sbj M=67.7%, SD=9.16; IC2_Obj M=72.1%, SD=5.53
- Clause 2: Referential structure type

...because **he** daxed. [1-pro]

...because he daxed Tom. [1-pro]

...because **he** daxed **him**. **[2-pro]**

EXP 1

EXP 2&3

EXP 1,2&3

- Disentangles effects of syntactic parallelism from semantic parallelism
 - an *explanation* relation (*because*) for the implicit causality effects and to avoid semantic parallelism effects
 - Nonce verbs: no verb semantics

Exp1 – 3: Predictions

• Clause 1: Implicit causality (IC) verb type

Henry {surprised (IC1_Sbj) / respected (IC2_obj)} Kevin Henry {cheated (IC1_Sbj) / criticized (IC2_obj)} Kevin

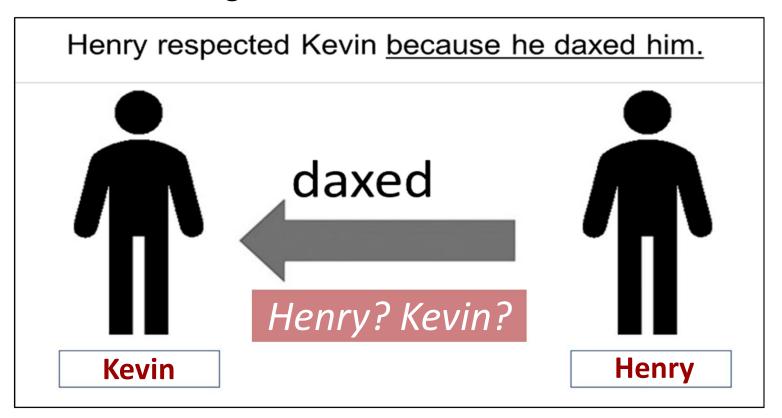
EXP 1&2

EXP₃

- EXP1 (Stimulus/Experiencer verb bias): IC1_Sbj M=67.4%, SD=13.6; IC2_Obj M=76.2%, SD=11.7
- EXP2 (Agent-Patient verb bias): IC1_Sbj M=67.7%, SD=9.16; IC2_Obj M=72.1%, SD=5.53
- Clause 2: Referential structure type
 ...because he daxed. [1-pro]
 ...because he daxed Tom. [1-pro]
 ...because he daxed him. [2-pro]
 EXP 1

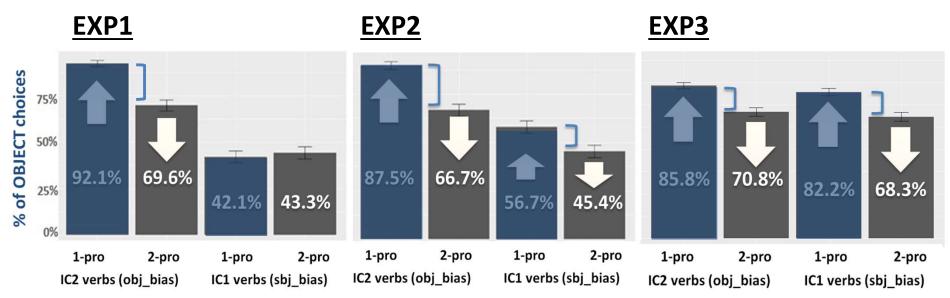
 EXP 1

 EXP 1


 EXP 1,2&3

<u>Referential structure effects</u>: Would **1-pronoun configurations** pattern differently from **2-pronoun configurations**?

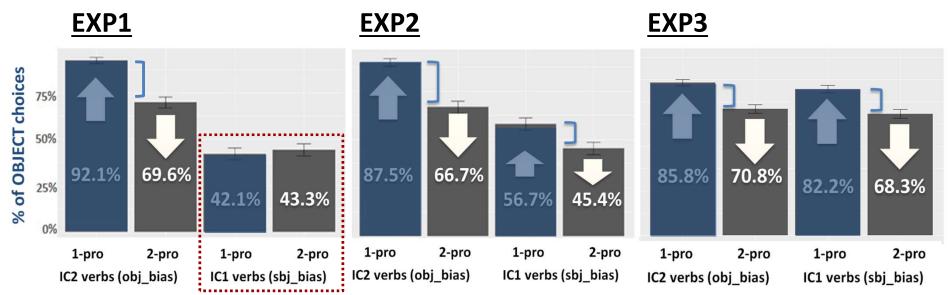
- Yes: Dependence view (syntax-level / discourse-level)
- No: Independence view (Parallel Function Strategy)


Method – Picture-writing task

Picture-writing task:

- Participants: Native English speakers (Exp1: n= 45, Exp2: n= 48, Exp3: n= 60)
- Items: 24 Targets + 36 Fillers
- Method: Web survey with Qualtrics + Amazon Mturk

Henry {surprised (IC1) / respected (IC2)} Kevin because he daxed him/(Tom).

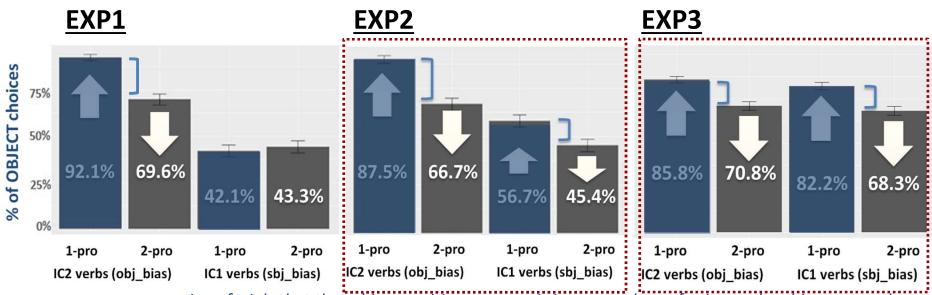


proportion of trials that the subject-position pronoun is interpreted as referring to the object antecedent

Referential structure effects (Dependence views)

(p <.001***, glmer)

Henry {surprised (IC1) / respected (IC2)} Kevin because he daxed him/(Tom).

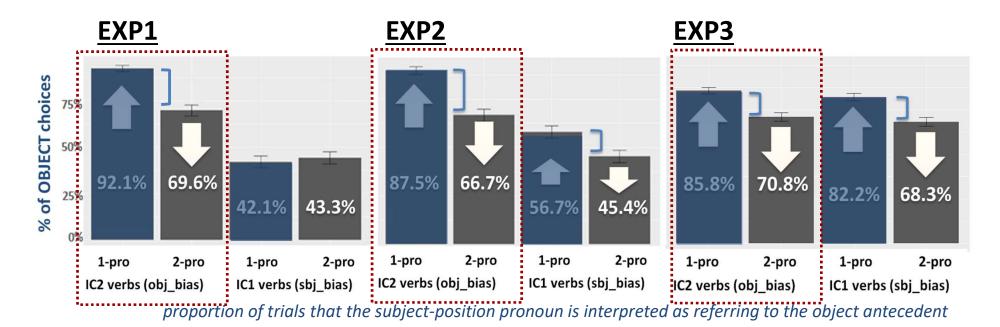

proportion of trials that the subject-position pronoun is interpreted as referring to the object antecedent

| 20

Exp1: Referential structure effects only with IC2 verbs

- Potential confound stem from verb transitivity
- "He daxed" (Intransitive verb) vs. "He daxed him" (Transitive verb)
- IC1 1-Pro condition: relatively non-prominent subjects in both clauses (Stimulus subjects + Intransitive subjects) \rightarrow subject interpretation \uparrow

Henry {surprised (IC1) / respected (IC2)} Kevin because he daxed him/(Tom).



proportion of trials that the subject-position pronoun is interpreted as referring to the object antecedent

- Exp2 & Exp3: Referential structure effects both with IC1 & IC2 verbs
 - No confound stem from verb transitivity
 - "He daxed Tom" (Transitive verb) vs. "He daxed him" (Transitive verb)

Exp2: IC2 verbs (p<.01**), IC1 verbs (p<.001***);Exp3: IC2 & IC1 verbs (p<.001***)

Henry {surprised (IC1) / respected (IC2)} Kevin because he daxed him/(Tom).

Replicate IC verb effects

IC2 verbs (obj-bias) >_{obj interpretation} IC1 verbs (sbj-bias)

Henry respected Kevin

Henry surprised Kevin

(p < .05*, glmer)

Discussion of Exp 1 – Exp 3

Significant referential structure effects

- Multiple-pronoun resolution ≠ single-pronoun resolution
- Referential structure effects generalize across verb classes with different thematic roles.

Support the dependence view (Centering Theory)

- There are interactions between the anaphoric dependencies of the two different pronouns.
- Differences in referential structural properties contribute to discourse coherence (a bias to maximize coherence)

Replicated IC verb bias effects

 The picture-writing task, even with nonce verbs, yields meaningful data regarding pronoun interpretation.

Experiment 4: Real-time processing of multiple pronoun interpretation

How our mental models of pronoun resolution are dynamically updated in real time

Referential structure effects during real-time processing

- Mental computations in language comprehension occur **incrementally** (e.g., Cooper, 1974; Eberhard et al., 1995; Tanenhaus et al., 1995).
- When faced with an indirect object pronoun → presence/absence of preceding pronoun's dependency information
- **Preceding pronoun's dependency** information is used in forming the subsequent pronominal dependency ('her'), as well as revising the preceding pronominal dependency ('she') in Exp1-3.

Lucy₁ tickled Ivy₂ on the park bench because John had yolled the lyfander to her

1-Pronoun

Lucy₁ tickled Ivy₂ on the park bench because she had yolled the lyfander to her

2-Pronoun

Referential structure effects during real-time processing

- Mental computations in language comprehension occur **incrementally** (e.g., Cooper, 1974; Eberhard et al., 1995; Tanenhaus et al., 1995).
- When faced with an indirect object pronoun → presence/absence of preceding pronoun's dependency information
- **Preceding pronoun's dependency** information is used in forming the subsequent pronominal dependency ('her'), as well as revising the preceding pronominal dependency ('she') in Exp1-3.

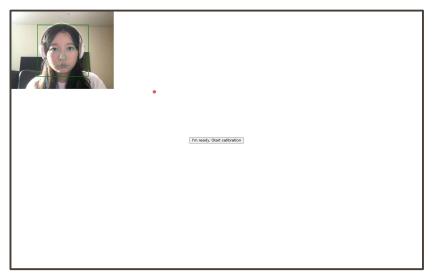
When does this information begin to be used in pronoun resolution?

Lucy₁ tickled Ivy₂ on the park bench because John had yolled the lyfander to her

1-Pronoun

Lucy₁ tickled Ivy₂ on the park bench because she had yolled the lyfander to her

2-Pronoun


preceding dependency info.

Webcam-based visual-world eye-tracking

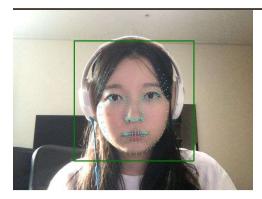
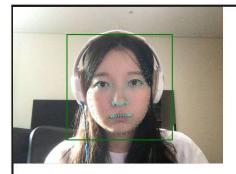

- Eye-tracking experiment run remotely over the internet, using *PennController IBEX* (Zehr & Schwarz, 2018) and the eye-tracking JavaScript library *Webgazer.js library* (Papoutsaki et al., 2016)
- Participants' eye gaze information to be gathered/recorded through their webcams
- Spatial and temporal resolution are less fine-grained than with lab eye-trackers
- For visual-world studies, replicated results produced with lab eye-trackers (e.g., Degen et al., 2021; Lee, 2022; Slim & Hartsuiker, 2021; Storbeck, 2022; Vos et al., 2022)
- 70 participants (native English speakers) were included in final analyses out of 98

Image from Papoutsaki et al., (2018)

Initial calibration phase



I'm ready. Start calibration

Initial calibration phase		
	Initial calibration phase	

Initial calibration pharse		

Initial calibration phase

Let's try again! We were not able to precisely calibrate the software.

Your calibration score is 14

Calibration normally takes a few tries. If your computer is unable to calibrate after several tries, don't worry; you can still do the experiment and get paid.

Here are a few tips:

- Adjust your position so that your face fits inside the preview square and the square is green.
- Make sure you are in a well-lit location.
- Make sure you're looking at each green circle the entire time it is on the screen.
- · Use your eyes to look; try not to move your head.
- If you wear glasses, try to adjust your position so they don't reflect light back into the webcam.
- Adjust the tilt of your screen (or raise your laptop, e.g. with books) so that you look directly at the webcam, not at an upward or downward angle.
- · External webcams should be at the top center of the screen.
- If using a laptop, plug it into its power adapter.
- Close other programs that may be using a significant portion of your computer's energy.

Retry

5 attempts above 60%

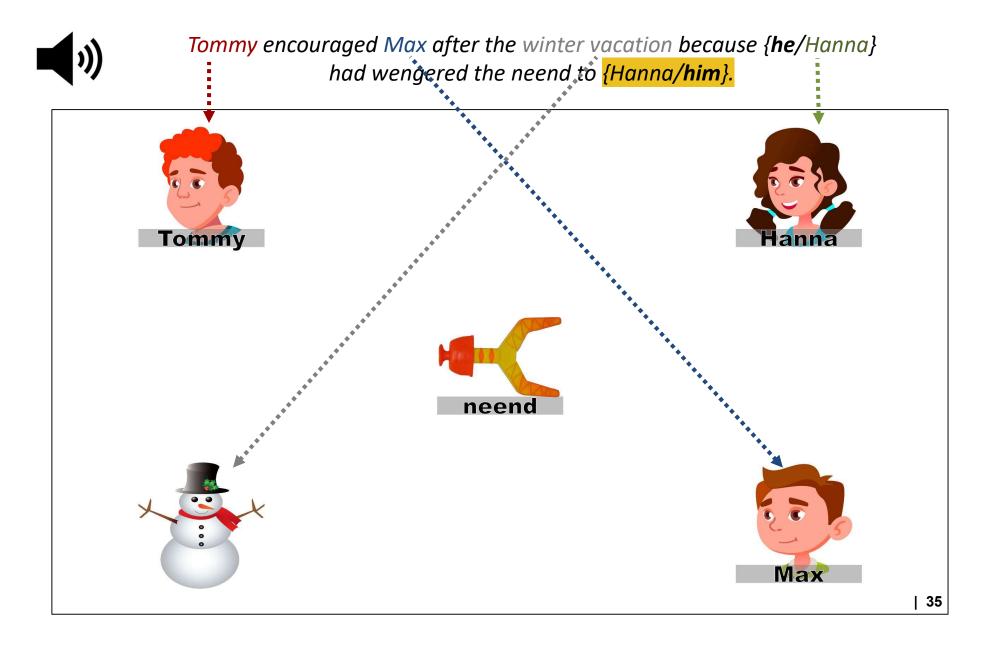
Auditory stimuli

Ref.st.	Examples
Sbj Pro	Tommy encouraged Max after the winter vacation because he had wengered the neend to Hanna.
Obj Pro	Tommy encouraged Max after the winter vacation because Hanna had wengered the neend to him.
Two Pro	Tommy encouraged Max after the winter vacation because he had wengered the neend to him.

- Two-clause sentence connected by *because*
- 1st clause: 2 potential antecedents with an equi-biased IC verb

Auditory stimuli

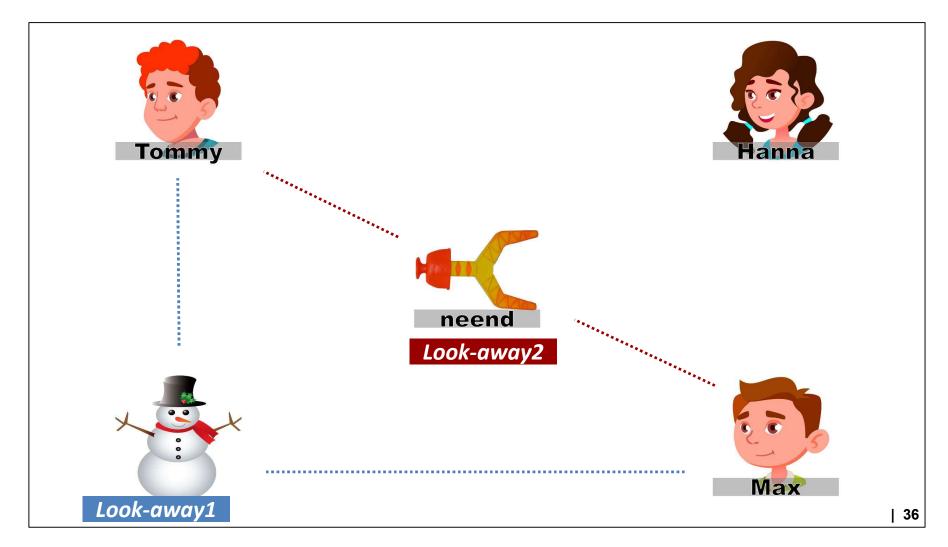
Ref.st.	Examples
Sbj Pro	Tommy encouraged Max after the winter vacation because he had wengered the neend to Hanna.
Obj Pro	Tommy encouraged Max after the winter vacation because Hanna had wengered the neend to him.
Two Pro	Tommy encouraged Max after the winter vacation because he had wengered the neend to him.


- Two-clause sentence connected by *because*
- 1st clause: 2 potential antecedents with an equi-biased IC verb
- **2**nd **clause:** 1 ditransitive nonce verb and 1 nonce direct object to minimize semantic variability + Pronoun(s) for referential structure manipulation
 - Referential Structure (Sbj-Pronoun/Obj-Pronoun/Two-Pronoun)

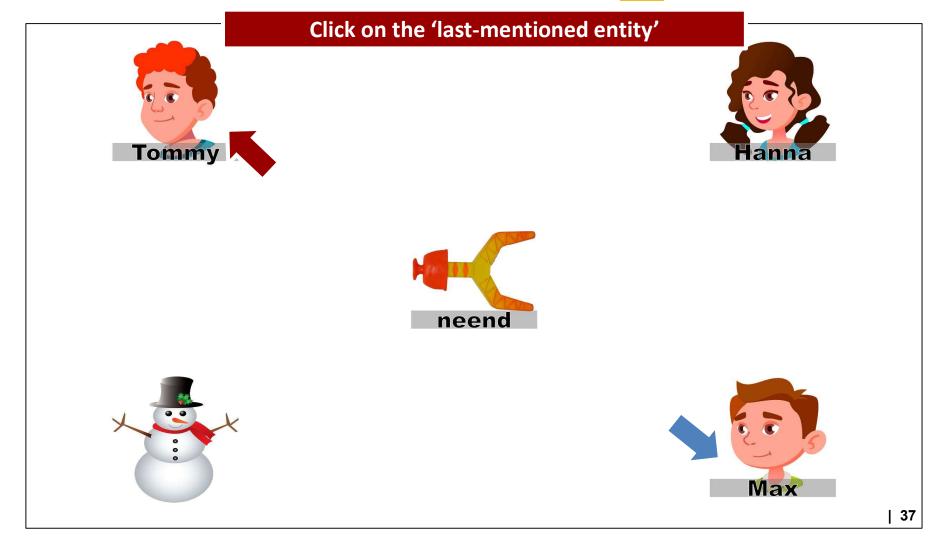
Auditory stimuli

Ref.st.	Examples
Sbj Pro	Tommy encouraged Max <u>after the winter vacation</u> because he had wengered <u>the neend</u> to Hanna .
Obj Pro	Tommy encouraged Max <u>after the winter vacation</u> because Hanna had wengered <u>the neend</u> to <u>him</u> .
Two Pro	Tommy encouraged Max <u>after the winter vacation</u> because he had wengered <u>the neend</u> to him .

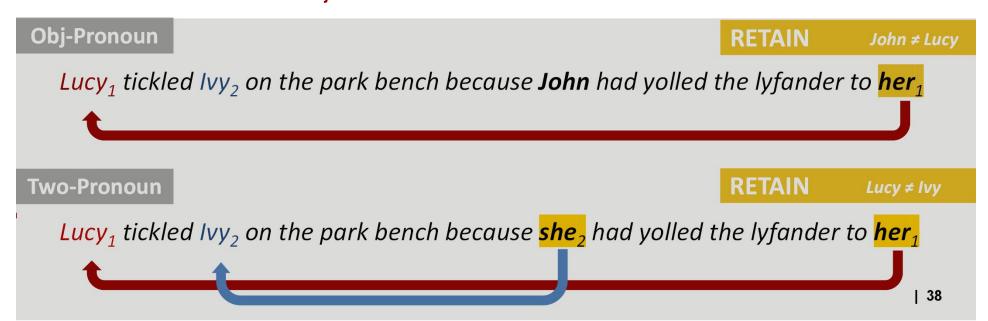
- Two-clause sentence connected by because
- 1st clause: 2 potential antecedents with an equi-biased IC verb
- 2nd clause: 1 ditransitive nonce verb and 1 nonce direct object to minimize semantic variability + Pronoun(s) for referential structure manipulation
 - Referential Structure (Sbj-Pronoun/Obj-Pronoun/Two-Pronoun)
- 2 look-aways before pronouns: time/location PPs and nonce nouns
 → attract eye-gaze to a neutral position)
- Last-mentioned selection task (24 Targets & 36 Fillers, 70 people in final analyses):
 - Click on the picture that was mentioned last in the sentence (for Two-pro/Obj-Pronoun condition, pronoun's referent selection)


Visual Stimuli: Screen layout for the targets

Visual Stimuli: Screen layout for the targets


Tommy encouraged Max after the winter vacation because {he/Hanna} had wengered the neend to {Hanna/him}.

Visual Stimuli: Screen layout for the targets



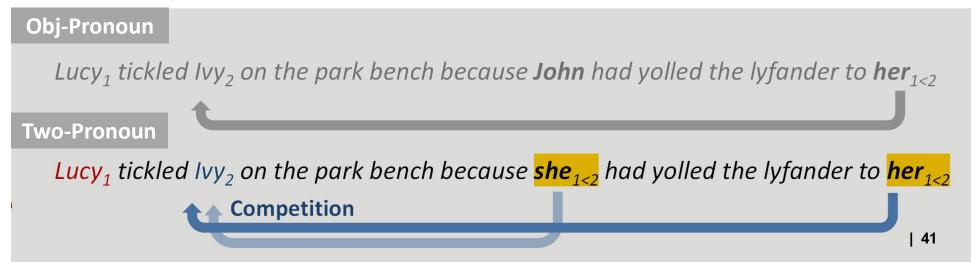
Tommy encouraged Max after the winter vacation because {he/Hanna} had wengered the neend to him.

- Centering Theory (CT) (e.g., Grosz et al., 1995; Walker et al 1998)
 - Pronouns are resolved so that the transition from one sentence to the next is as coherent as possible (e.g., topic maintenance)
 - They are resolved in such a way that maximizes coherence of the discourse transition (CONTINUE > RETAIN > SHIFT)
- Referential structure effects:

Obj-pronoun st. ≥_{sbj selections} 2-pronoun st.

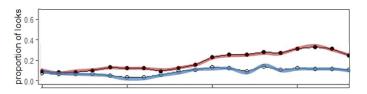
- Centering Theory (CT) (e.g., Grosz et al., 1995; Walker et al 1998)
 - Pronouns are resolved so that the transition from one sentence to the next is as coherent as possible (e.g., topic maintenance)
 - They are resolved in such a way that maximizes coherence of the discourse transition (CONTINUE > RETAIN > SHIFT)
- Referential structure effects:

Obj-pronoun st. ≥_{sbj selections} 2-pronoun st.



- Antecedent recency guides pronoun resolution (Arnold, 1998; Cunnings et al., 2014; Streb et al., 2004)
 - Most recently mentioned element is favored as the antecedent for a pronoun
 - Found in ambiguous/complex contexts (e.g., antecedents are far from the pronoun or multiple antecedents present); degrading of representations in memory over time
- Referential structure effects: Obj-pronoun st. <_{sbj selections} 2-pronoun st.
 - Stronger subject preference ('him') in 2-Pronoun than Obj-Pronoun structure
 - Competition for the object antecedent between the subject and indirect object pronoun in the 2-Pronoun condition

Obj-Pronoun

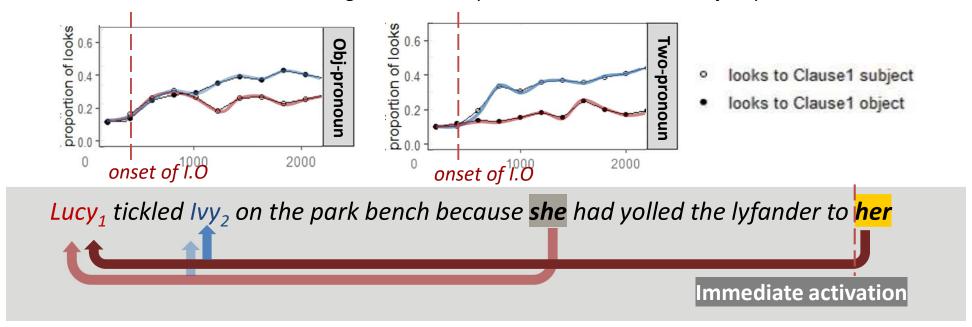

 $Lucy_1$ tickled Ivy_2 on the park bench because **John** had yolled the lyfander to $\frac{her_{1<2}}{}$

- Antecedent recency guides pronoun resolution (Arnold, 1998; Cunnings et al., 2014; Streb et al., 2004)
 - Most recently mentioned element is favored as the antecedent for a pronoun
 - Found in ambiguous/complex contexts (e.g., antecedents are far from the pronoun or multiple antecedents present); degrading of representations in memory over time
- Referential structure effects: Obj-pronoun st. <_{sbj selections} 2-pronoun st.
 - Stronger subject preference ('him') in 2-Pronoun than Obj-Pronoun structure
 - Competition for the object antecedent between the subject and indirect object pronoun in the 2-Pronoun condition

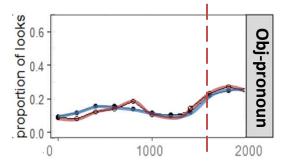
Predictions: Gaze patterns during pronoun resolution

- Subject advantage scores (proportion of looks to the object looks to the subject) (e.g., Arnold et al., 2000, 2007; Kaiser, 2011) to compare pronoun resolution by ref. structure type
- During subject pronoun interpretation (NOT a critical region)
 - No referential structure effects: Subject-Pronoun = Two-Pronoun condition
 - Two conditions will not show different gaze patterns (same until indirect obj)
 - No peak in looks to either antecedent, because of the equi-biased IC verbs (maybe with recency/ discourse coherence)

- looks to Clause1 subject
- looks to Clause1 object


Lucy₁ tickled Ivy₂ on the park bench because she had yolled the lyfander to John

 $Lucy_1$ tickled Ivy_2 on the park bench because $\frac{she}{}$ had yolled the lyfander to $\frac{she}{}$


Predictions: Gaze patterns during pronoun resolution

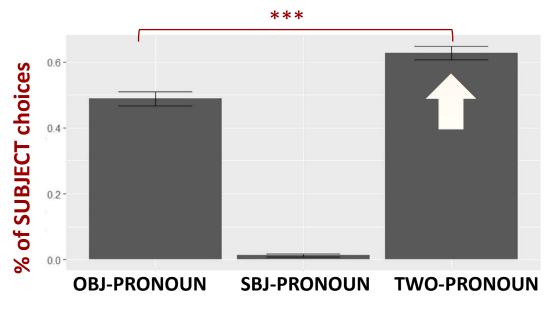
- During indirect object pronoun interpretation (Critical region)
 - Referential effects (different gaze patterns): Obj-Pro ≠ Two-Pro (sbj advantage score)
 - Immediate activation hypothesis: Early emergence of referential effects
 - Subject pronoun's referential dependencies and related information are IMMEDIATELY utilized into building referential dependencies with indirect object pronoun.

Predictions: Gaze patterns during pronoun resolution

- During indirect object pronoun interpretation(Critical region)
 - Delayed activation hypothesis: Late emergence of referential effects
 - Retrieval of the subject pronoun's dependencies are delayed
 - Initially, interpret object pronoun in an 'encapsulated' way regardless of referential dependencies from the sbj pronoun. And then the pre-existing dependencies come into play (processing of the object pronoun)

- looks to Clause1 subject
- looks to Clause1 object

 $Lucy_1$ tickled Ivy_2 on the park bench because she had yolled the lyfander to her

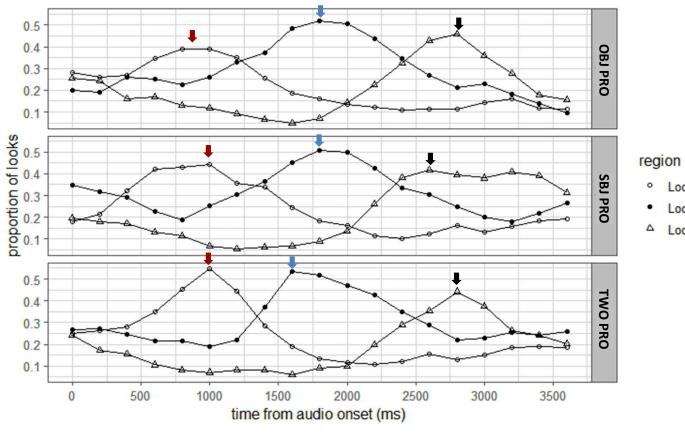

Immediate activation

Lucy₁ tickled Ivy₂ on the park bench because she had yolled the lyfander to her

Delayed activation

Results: Last-mentioned referent choices

Tommy encouraged Max after the winter vacation because {he/Hanna} had wengered the neend to {Hanna/him}.

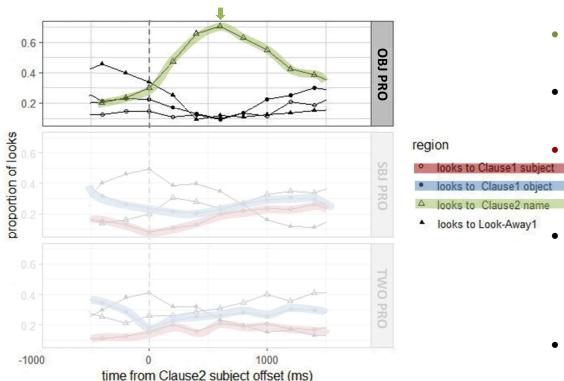


The proportion of selections of the preceding SUBJECT as the lastmentioned referent (error bars ±1 SE)

- Effects of referential structure
- Subject-antecedent preference:
 OBJ-Pronoun < Two-Pronoun
 (p < .001, glmer)
- Recency guides pronoun resolution
 - → Competition for the object antecedent (most recently mentioned) with two pronouns

Results: Gaze patterns during the matrix-clause

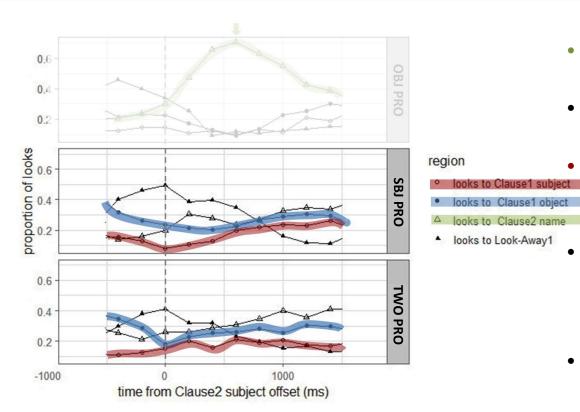
Tommy encouraged Max after the winter vacation because {he/Hanna} had wengered the neend to {Hanna/him}


Eye movements relative to the onset of the matrix-clause subject (each facet shows looks to the three regions of interest within a condition)

- Looks to subject
- Looks to object
- △ Looks to look-away

Results: Gaze patterns in subject pronoun

Tommy encouraged **Max** after the winter vacation because **Hanna** had wengered the neend to him.


Eye movements relative to **the offset** of the because-clause subject **Why offset?** because /z/+ she $/(/ \rightarrow$ sibilants assimilation

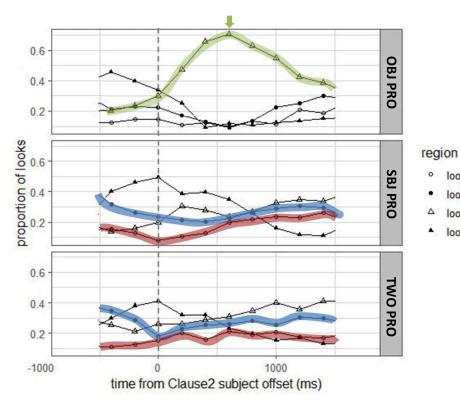
- Sbj-Name ≠ Sbj pronoun
- No referential structure effects
 - No subject-antecedent preference in all time windows
 - Subject advantage scores: SBJ-Pronoun = Two-Pronoun (p >.01, lmer)
- Visually, equi-biased IC verbs and recency factor affect pronoun resolution

Results: Gaze patterns in subject pronoun

Tommy encouraged **Max** after the winter vacation because **he** had wengered the neend to Hanna.

Eye movements relative to **the offset** of the because-clause subject **Why offset?** because /z/+ she $/(/ \rightarrow$ sibilants assimilation

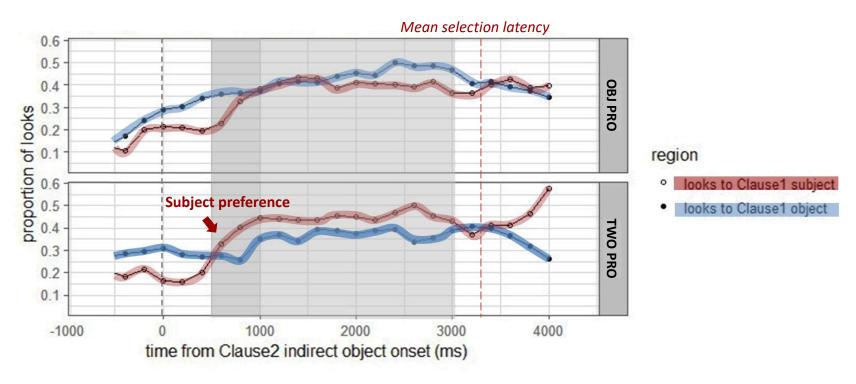
- Sbj-Name ≠ Sbj pronoun
- No referential structure effects
 - No subject-antecedent preference in all time windows
 - Subject advantage scores: SBJ-Pronoun = Two-Pronoun (p >.01, lmer)
- Visually, equi-biased IC verbs and recency factor affect pronoun resolution


Results: Gaze patterns in subject pronoun

Tommy encouraged **Max** after the winter vacation because {he/Hanna} had wengered the neend to {Hanna/him}

looks to Clause1 subject

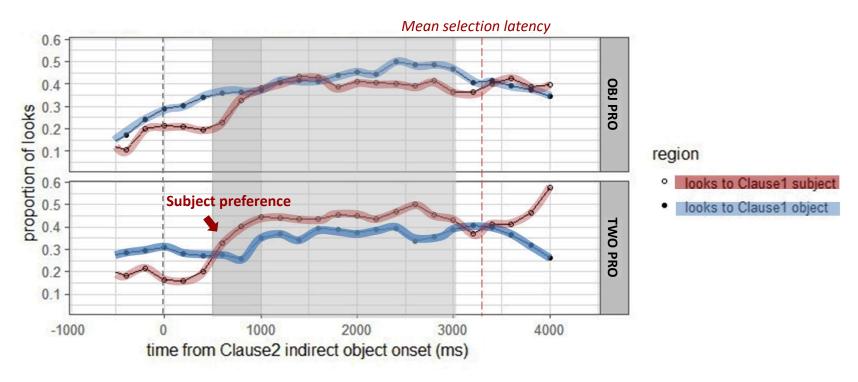
looks to Clause1 object
 △ looks to Clause2 name
 ▲ looks to Look-Away1


- Sbj-Name ≠ Sbj pronoun
- No referential structure effects
 - No subject-antecedent preference in all time windows
- Subject advantage scores: SBJ-Pronoun = Two-Pronoun (p >.01, Imer)
- Visually, equi-biased IC verbs and recency factor affect pronoun resolution

Eye movements relative to **the offset** of the because-clause subject

Why offset? because /z/+ she ///> sibilants assimilation

Results: Gaze patterns in indirect object pronoun


Tommy encouraged **Max** after the winter vacation because {he/Hanna} had wengered the neend to him.

- Referential structure effects (500-1000ms (p = .0402***) & 1000-3000ms (p=.037***))
 - Subject preference (subject advantage scores) = OBJ-Pronoun < Two-Pronoun
 - Recency effects as in last-mentioned selection results

Results: Gaze patterns in indirect object pronoun

Tommy encouraged **Max** after the winter vacation because {he/Hanna} had wengered the neend to him.

 Immediate activation hypothesis: referential structure effects emerge early on upon hearing the subsequent pronoun → the antecedents are almost immediately retrieved with the dependencies linked to the preceding subject pronoun during indirect pronoun resolution

Discussion

- **Support immediate activation hypothesis:** referential structure effects emerge early on during indirect object pronoun resolution
- Why early activation of the preceding pronominal dependencies?
 - Due to eagerness to complete open dependencies (the storage costs associated with keeping dependencies open during processing)
 - Cataphora resolution: preference for the closest referent has been found

When **he** was at the party, **the girl/boy** cruelly teased the boy/girl.

(Eye-tracking study by Van Gompel and Liversedge (2003)

Discussion

- Recency effects on pronoun resolution
 - Subject-antecedent preference was stronger in the Two-Pronoun than One-Pronoun condition (last-mentioned selection/ gaze patterns)
- Discourse coherence factor might play a role
 - In the Object-Pronoun condition (1-pronoun), no strong object-antecedent preference (last-mentioned selection/ gaze patterns)
- Different factors exert their effects differently from one context to another during pronoun resolution
- Referential structure effects can be generalized beyond particular contexts
 - Convergent evidence on the effects of referential structure in different context with multiple methodology provides strong evidence on it

Conclusion

- Importance of 'forward-looking approach' in pronoun resolution
 - Most existing models of pronoun resolution take a 'backward-looking' approach (e.g., salience of potential antecedents in the prior context)
 - A comprehensive model of pronoun resolution should include forward-looking approach (i.e., referential structure effects)

When interpreting a pronoun, what comes next matters!

In particular, who is or isn't mentioned later.

Thank you.

Prof. Elsi Kaiser Dr. Jesse Storbeck

Ian Rigby

Haley Hsu

- **Exp1-3:** Song, Jina. & Elsi Kaiser. (2023). Effects of referential structure on pronoun interpretation Language, Cognition and Neuroscience, (printed online)
- **Exp4:** Song, Jina., & Elsi Kaiser. (2023, 03). Interpretation of multiple pronouns in English: A webcam eye-gaze study, Poster presentation at HSP Conference. University of Pittsburgh, USA.