A Psycho/neurolinguistic Approach to Cross-linguistic Morphological Processing

조정화 (홍익대학교)

2025. 05. 17 한국언어정보학회 월례발표회

Table of Contents

- Morphological representation in monolinguals
 - Study 1: Root and affix priming
- Word and morphological representation in bilinguals
 - Study 2: Prefix priming
 - Study 3: Neural decoding

Morphological representation in monolinguals

Study 1

"The psycholinguistic literature is generally lacking detailed descriptions of how affixed words are represented and processed"

Morphological priming:

#########

church

CHURCH

Morphological priming:

Morphological priming:

Morphological priming:

Rastle et al. (2000) 11

Morphological priming:

Piece-based theory	Affix stripping theory
 Affixes are represented as objects in memory as roots are 	 Affixes are stripped off upon word recognition; they are not objects in memory
Affixes are expected to show priming effects	No priming effects are expected

Piece-based theory	Affix stripping theory				
 Affixes are represented as objects in memory as roots are 	• Affixes are stripped off upon word recognition; they are not objects in memory				
Affixes are expected to show priming effects	No priming effects are expected				
Not co	nclusive				

Exp 1. Study goal

 Does an inflectional affix (English past tense morpheme –ed) show priming effects?

Participants

244 English speakers (111 males, age: 32.21 (16-64)) living in the United Kingdom (209 participants) or United States (35 participants)

0.2

0.0

30

- Short SOA (34 ms): 121 participants
- Long SOA (150 ms): 123 participants •

priming effects at short SOA 1.0 current study 0.8 Estimated Power previous studies Effect Size (ms) - 30 - 20

100

Participants

Power analysis of inflectional suffix

1000

300

Stimuli

• 150 sets (target=word) and 150 sets (target=nonword) (25 items per condition)

Condition	Prime	Target				
+MORPH						
(a) Identity	called	CALLED				
(b) Test (suffix overlap)	turned	CALLED				
(c) Control	turns	CALLED				
-MORPH (orthographical)						
(a) Identity	travel	TRAVEL				
(b) Test (letter overlap)	compel	TRAVEL				
(c) Control	commit	TRAVEL				

Procedure

- The experiment was conducted online using Psychopy (version 2020.1.3)
- Data were collected via Prolific

Analysis

- Linear regression with transformed reaction times (RTs) as a dependent measure and SOA (short vs long), Condition (Identity, Test, Control), Type (+MORPH vs -MORPH) and their interaction, prime word length, target word length, prime word frequency and target word frequency as fixed effects
- Outlier RTs (<200 ms or >2000 ms) were removed (0.8 % of total data)

- Robust Identity priming effects (*B* = 3.37e-5, *p* < 0.001)
- No statistically significant Test priming effects (B = 5.02e-5, p = 0.303) but interacted with SOA (B = -2.94e-5, p < 0.001)
- Short SOA: both +MORPH and –MORPH show Test priming
- Long SOA: -MORPH show inhibitory priming effects

- Robust Identity priming effects (*B* = 3.37e-5, *p* < 0.001)
- No statistically significant Test priming effects (B = 5.02e-5, p = 0.303) but interacted with SOA (B = -2.94e-5, p < 0.001)
- Short SOA: both +MORPH and –MORPH show Test priming
- Long SOA: -MORPH show inhibitory priming effects

- Robust Identity priming effects (*B* = 3.37e-5, *p* < 0.001)
- No statistically significant Test priming effects (B = 5.02e-5, p = 0.303) but interacted with SOA (B = -2.94e-5, p < 0.001)
- SOA=34ms (short): both
 +MORPH and –MORPH show
 Test priming
- SOA=150ms (long): -MORPH show inhibitory priming effects

- Robust Identity priming effects (*B* = 3.37e-5, *p* < 0.001)
- No statistically significant Test priming effects (B = 5.02e-5, p = 0.303) but interacted with SOA (B = -2.94e-5, p < 0.001)
- SOA=34ms (short): both
 +MORPH and –MORPH show
 Test priming
- SOA=150ms (long): -MORPH show inhibitory priming effects

- Short SOA: Both morphological and orthographic overlap show priming effects
 - Morphological and/or orthographical information is automatically extracted from prime words
 - It is unclear whether the masked priming effect of the past tense morpheme is purely due to morphology
- Long SOA: Orthographic overlap yields inhibitory priming effects
 - At long SOA where sematic processing comes into play, co-activated words (orthographic neighbors) may become inhibited due to lexical competition

Exp 2. Meta-analysis: Study goal

- Aggregate across different studies on different languages in a Bayesian meta-analysis
- Identify a summary estimate of morphological priming effects of various types of morphemes (roots, prefixes, and suffixes)

Study selection:

- Studies that examined morphological priming with a lexical decision task were selected in databases (e.g., Google Scholar, PubMed, PsycINFO, ERIC, EBSCOhost, Scopus, and Web of Science Core Collection)
- **33 papers (81 experiments)** published between 1997-2022
 - Short SOA (30-72 ms): 64 experiments
 - Long SOA (100-300 ms): 17 experiments

	• •		<u> </u>		
		Short SOA	Long SOA	Total	List of languages
Root (hu	inter-HUNT)	45 (8)	6 (1)	51 (8)	Arabic, Dutch, English, French, German, Hebrew, Serbian, Russian
Prefix (a	cclaim-ACCUSTOM)	7 (3)	6 (2)	13 (3)	English, French, Spanish
Suffix	Derivational (sheeter-TEACHER)	8 (4)	1 (1)	9 (4)	English, French, Italian, Spanish
	Inflectional (turned-CALLED)	4 (3)	4 (3)	8 (4)	English, Russian, Serbian, Slovene

Table 4. Number of experiments (number of languages represented across the experiments) included in each group.

Analysis:

A	В	C	D	E	F	G	H		1	J	K	Р		R	V	W		Х	Y	Z
Group	 Author 	▼ SOA ▼ S	SOA2 🔻	Partici 💌	Langua 🔻	Task 🔹	 Total 	F 🔻 Ler	gth 🔻	Form_Stimu -	Fori 🔻	Form_	▼ For	m_(=	Morph_stim	▼ Mop	r M	or 🔻	Morph_ 🔻	Morph
Prefix	Chateau et al 2002 Exp1 HP	45 r	masked	40	English	lexical d	e(72:	1.88 NA		violin-violate	beginn		21	20.31	geometric-ge	opł 3.	.6 ye	s	prefix	der
Prefix	Chateau et al 2002 Exp1 LP	45 r	masked	40	English	lexical d	ec 72:	1.88 NA		NA	NA	NA	NA		acclaim-accu	stoi 2.	.6 ye	s	prefix	der
Prefix	Dominguez et al. 2006	200 u	unmasked	17	Spanish	lexical d	ec 87:	1.33	7.79	reaccion-regal	o beginn	-	20	10.17	reaccion-refo	rma NA	ye	s	prefix	der
Prefix	Dominguez et al. 2010 Exp1a	33 r	masked	36	Spanish	lexical d	ec 688	3.00	7.77	7 industria-incap	ebeginn	í.	19	12.07	infeliz-incapa	z 2.327	'6 ye	s	prefix	der
Prefix	Dominguez et al. 2010 Exp1b	132 เ	unmasked	36	Spanish	lexical d	ec 660).67	7.77	7 industria-incap	ebeginn	-	14	12.61	infeliz-incapa	z 2.327	'6 ye	s	prefix	der
Prefix	Dominguez et al. 2010 Exp1c	200 u	unmasked	36	Spanish	lexical d	ec 65:	1.67	7.77	7 industria-incap	abeginn	-	19	14.73	infeliz-incapa	z 2.327	'6 ye	s	prefix	der
Prefix	Dominguez et al. 2010 Exp2a	33 r	nasked	36	Spanish	lexical d	e 628	3.00	7.30) insulto-industri	itbeginn	i i	-2	11.29	NA	2.314	8 ye	s	NA	NA
Prefix	Dominguez et al. 2010 Exp2b	200 ເ	unmasked	36	Spanish	lexical d	e 620	0.67	7.30) insulto-industri	i: beginn	i i i i i i i i i i i i i i i i i i i	6	9.94	NA	2.314	8 ye	s	NA	NA
Prefix	Dominguez et al. 2010 Exp3a	33 r	masked	36	Spanish	lexical d	ec 688	3.50	7.47	7 caliza-cachete	beginn	í.	2	8.81	infeliz-incapa	z 3.233	3 ye	s	prefix	der
Prefix	Dominguez et al. 2010 Exp3b	200 u	unmasked	36	Spanish	lexical d	ec 680	5.75	7.47	7 caliza-cachete	beginn	í.	-2	9.97		3.233	3 ye	s	prefix	der
Prefix	Giraudo and Grainger 2003 Exp1	43 r	masked	30	French	lexical d	ec 795	5.83 5~8	3	engin-envol	beginn	í.	16	11.29	enjeu-envol	NA	ye	s	prefix	der
Prefix	Giraudo and Grainger 2003 Exp1	57 r	masked	30	French	lexical d	ec 775	5.17 5~8	3	engin-envol	beginn	i	6	11.29	enjeu-envol	NA	ye	s	prefix	der
Prefix	Giraudo and Grainger 2003 Exp1	115 u	unmasked	30	French	lexical d	ec 760	5.83 5~8	3	engin-envol	beginn	í.	0	11.29	enjeu-envol	NA	ye	s	prefix	der
Suffix	Cho et al. 2022	34 r	masked	120	English	lexical d	ec 76:	1.27	5.23	8 travel-compel	end	9	9.3	6.05	turned-called		2 ye	s	suffix	inf
Suffix	Cho et al. 2022	150 u	unmasked	120	English	lexical d	ec 778	3.32	5.23	8 travel-compel	end	-15	5.4	5.58	turned-called		2 ye	s	suffix	inf
Suffix	Crepaldi et al. 2016 Exp1	42 r	masked	45	English	lexical d	ec 690	5.33	4.86	sportel-brothel	end		16	10.25	sheeter-teach	ier	nc)	suffix	der
Suffix	Dunabeitia et al. 2008 Exp3	50 r	masked	30	Spanish	lexical d	ec 770).25	7.17	volumen-certar	rend		-2	11.29	brevedad-igu	aldad	ye	s	suffix	der
Suffix	Giraudo and Grainger 2003 Exp1	43 r	masked	30	French	lexical d	ec 795	5.83 5~8	3	peuplier-ferani	e end		5	11.29	peuplier-fera	nier	3 ye	s	suffix	der
Suffix	Giraudo and Grainger 2003 Exp1	57 r	masked	30	French	lexical d	ec 775	5.17 5~8	3	peuplier-ferani	e end		1	11.29	peuplier-fera	nier	3 ye	s	suffix	der
Suffix	Giraudo and Grainger 2003 Exp1	115 u	unmasked	30	French	lexical d	ec 760	5.83 5~8	3	peuplier-ferani	e end		-1	11.29	peuplier-fera	nier	3 ye	s	suffix	der
Suffix	Marjanovic and Crepaldi 2020 Exp1	36 r	masked	60	Slovene	lexical d	ec 71	5.09	4.32	2 NA	NA	NA	NA		mestam-halja	m	2 ye	s	suffix	inf
Suffix	Marjanovic and Crepaldi 2020 Exp2	36 r	masked	62	Slovene	lexical d	ec 714	4.18	4.32	2 NA	NA	NA	NA		mestam-halja	m	2 ye	s	suffix	inf
Suffix	VanWagenen and Pertsova 2014 Nouns	300 ເ	unmasked	36	Russian	lexical d	ec 624	4.57 NA		fprasonkax-naz	iend	-	22	15.31	fkulakax-naZi	vatax	ye	s	suffix	inf
Suffix	VanWagenen and Pertsova 2014 Verbs	300 u	unmasked	36	Russian	lexical d	ec 619	9.36 NA		patcot-tresot	end	-	10	17.58	virnot-tresot		ve	s	suffix	inf

- Effect sizes from each experiment were derived as the RT difference between related vs unrelated conditions
- Standard error (SE) was calculated in different ways depending on the information provided by the paper

Bayesian meta-analysis was conducted in R by fitting random-effects Bayesian hierarchical models (*brms* package)

Forestplot of studies with morphological overlap (long SOAs)

Pooled effect

Cho et al. (2024) *LCN* 28

50

- quoted estimate - shrinkage estimate

0

Results: Estimated priming effects

Figure 5. Estimated effect sizes (ms) and 95% Credibility Intervals of form and morphological priming (Root, Prefix, Suffix) at short and long SOAs from a random-effects Bayesian meta-analysis of 81 experiments.

Results: Estimated priming effects

Figure 5. Estimated effect sizes (ms) and 95% Credibility Intervals of form and morphological priming (Root, Prefix, Suffix) at short and long SOAs from a random-effects Bayesian meta-analysis of 81 experiments.

Cho et al. (2024) *LCN* 30

Results: Morphological-orthographic priming effects

Figure 6. Posterior distributions of differences between morphological priming and orthographic priming for different types of morphemes at short (left) and long (right) SOAs. Bars at the bottom of each distribution indicate 66% and 95% credibility intervals.

Results: Morphological-orthographic priming effects

Figure 6. Posterior distributions of differences between morphological priming and orthographic priming for different types of morphemes at short (left) and long (right) SOAs. Bars at the bottom of each distribution indicate 66% and 95% credibility intervals.

- Robust prefix and root priming in contrast to unreliable suffix priming effects across 81 experiments (~3,600 participants)
- **Prefix priming** indicates that affixes are not stripped off but remain in memory for lexical access in the same way as roots do
- In contrast, absence of suffix priming suggests even single-item visual word recognition is sensitive to linear order

be-friend-ed

Its role in lexical access
 may be masked by the preceding root

Word and morphological representation in bilinguals

Study 2-3

Study 2. Prefix priming in English-Spanish bilinguals

Morphological representation in L2

- L1 and L2 words are linked at the conceptual level (Revised Hierarchical Model)
 - Priming (Dutch and English: De Groot and Nas, 1991, Hebrew and English: Gollan et al., 1997, Chinese and English: Jiang, 1999, Japanese and English: Hoshino et al., 2010, Korean and English: Kim and Davis, 2003)
 - Overlapping brain regions when processing words in English and Chinese (Chee et al., 2000; Ding et al., 2003; Xue et al., 2004)
 - Similar brain activities for English words and Dutch words (Correia et al., 2014, 2015)

Morphological representation in L2

• L1 and L2 words are linked at the conceptual level (Revised Hierarchical Model)

- Greater overlap or association for cognates as compared to noncognates, leading to faster recognition (cognate facilitation effect)
- Less is known for how morphologically complex words are stored across different languages
- Are cognate prefixes also connected across different languages and show priming effects?

distract – disgustar (dislike)

Morphological representation in L2

•Age effects: the degree of sensitivity to L2 morphological structure may vary among bilinguals depending on their age of L2 acquisition

e.g., Smaller L2 root priming effects (e.g., geprüft 'checked'- prüft 'check') by late than early bilinguals

2. Study goal

 Test cognate prefix priming in English and Spanish and between those languages with early and late English-Spanish bilinguals

Participants

- Experiment 1 (Prime: English-Target: English): 59 English native speakers
- Experiments 2-4: English-Spanish bilinguals

	Early bilinguals	Late bilinguals							
Experiment 2 (L1 English-L2 Spanish)									
# participants	69	68							
Age of L2 acquisition	2.0 (1.72)	15.2 (5.89)							
Experiment 3 (L2 Spanish-L1 English)									
# participants	70	67							
Age of L2 acquisition	2.1 (1.98)	14.3 (5.39)							
Experiment 4 (L2 Spanish-L2 Spanish)									
# participants	73	69							
Age of L2 acquisition	2.1 (1.95)	15.7 (8.07)							

Stimuli: 120 word sets and 120 nonword sets (15 items per condition)

Condition	Experiment 1 (English-English)	Experiment 2 (English-Spanish)	Experiment 3 (Spanish-English)	Experiment 4 (Spanish-Spanish)
Identity				
(a) Related	hang-HANG]		
(b) Unrelated	erase-HANG	-		
Prefix		-		
(a) Related	distract-DISSUADE			
(b) Unrelated	unbend-DISSUADE	-		
Orthographical	·	-		
(a) Related	ignite-IGNORE			
(b) Unrelated	smile-IGNORE			
Semantic	·	-		
(a) Related	elect-VOTE			
(b) Unrelated	spend-VOTE			

41

Stimuli: 120 word sets and 120 nonword sets (15 items per condition)

Condition	Experiment 1 (English-English)	Experiment 2 Experiment 3 English-Spanish) (Spanish-English)		Experiment 4 (Spanish-Spanish)	
ldentity					
(a) Related	hang-HANG	hang-COLGAR	colgar-HANG	colgar-COLGAR	
(b) Unrelated	erase-HANG	erase-COLGAR	borrar-HANG	borrar-COLGAR	
Prefix					
(a) Related	distract-DISSUADE	distract-DISGUSTAR	disgustar-DISTRACT	distractir-DISGUSTAR	
(b) Unrelated	unbend-DISSUADE	unbend-DISGUSTAR	subrayar-DISTRACT	subrayar-DISGUSTAR	
Orthographical					
(a) Related	ignite-IGNORE	ignite-IGUALAR	igualar-IGNORE	ignorer-IGUALAR	
(b) Unrelated	smile-IGNORE	smile-IGUALAR	volver-IGNORE	volver-IGUALAR	
Semantic					
(a) Related	elect-VOTE	elect-VOTAR	votar-ELECT	votar-ELEGIR	
(b) Unrelated	spend-VOTE	spend-VOTAR	gastar-ELECT	gastar-ELEGIR	

Procedure

- The experiment was conducted online using Psychopy (version 2020.1.3)
- Data were collected via Prolific

Analysis

 For each experiment, linear regression with transformed reaction times (RTs) as a dependent measure and Condition (Identity, Prefix, Orthographical, Semantic), Relatedness (Related vs Unrelated), Group (early vs late bilinguals) and their interaction, prime word length, target word length, prime word frequency and target word frequency as fixed effects

• Experiment 1: Robust prefix priming in L1

• Experiments 2-4:

L1-L2 crosslanguage prefix priming among early bilinguals, but not late bilinguals

Cho and Brennan (2025) *BL*Ć

- **Only early bilinguals** show cross-languages prefix priming that is dissociated from form-based priming
- This indicates that cognate prefixes are mapped onto a shared representation
- Consistent with previous literature on language transfer, specifically of morphology (Marks et al., 2023; Ramírez et al., 2011; Wang et al., 2022), and convergence (Baptista et al., 2016; Muysken, 2000, 2013; Weinreich, 1953)

- **Only early bilinguals** show cross-languages prefix priming that is dissociated from form-based priming
- This indicates that cognate prefixes are mapped onto a shared representation
- Consistent with previous literature on language transfer, specifically of morphology (Marks et al., 2023; Ramírez et al., 2011; Wang et al., 2022), and convergence (Baptista et al., 2016; Muysken, 2000, 2013; Weinreich, 1953)
- Absence of cross-languages prefix priming by **late bilinguals** may be due to less sensitivity to L2 morphology

Study 3. Neural decoding of words and grammatical features

Cross-linguistic representation of grammatical features & affixes

Neural decoding

A machine learning classifier is

trained over the neural data and is tested with unseen data to predict the feature of given stimuli

Has been used for identifying pictured objects, word meanings, grammatical categories, etc.

Grootswagers et al. (2017)

(Carlson et al., 2003; Chan et al., 2011; Cox and Savoy, 2003; Huth et al., 2016; Mitchell et al., 2008; Shinkareva et al., 2011; Simanova et al., 2010)

Cross-linguistic neural decoding (Correia et al., 2015)

A classifier **trained** on neural data **from one language** is **tested** on neural data **from another language**

Obtained above-chance accuracies between English and Dutch at 550-600 ms and 850-900 ms

indicates similar brain activities for translation equivalents

Filtering out low frequency bands (<12 Hz) affected accuracies for within-language and betweenlanguages decoding

(1) Within-language discrimination(2) Across-language generalization

Temporal-windows A - Within-Language 0.54 0.55 0.50 0.5

Study goal

 To test cross-linguistic neural decoding of words as well as grammatical features (number and tense) with Korean-English bilinguals

- **Participants**: eighteen Korean-English bilinguals
- **Stimuli**: eight nouns (plural or singular) and eight verbs (present or past) in English and Korean

	Nc	ouns			Ve	erbs	
Sing	ular	Plural		Pres	ent	Past	
English	Korean	English	Korean	English	Korean	English	Korean
duck	오리 ori	ducks	오리들 ori-deul	leans	기댄다 gidaenda	leaned	기댔다 gidaessda
goat	염소yeomso	goats	염소들yeomso-deul	cools	식힌다 sikhinda	cooled	식혔다sikhyessda
swan	백조 baekjo	swans	백조들 baekjo-deul	helps	돕는다 dopneunda	helped	도왔다 dowassda
lion	사자 saza	lions	사자들 saza-deul	fills	채운다 chaeunda	filled	채웠다 chaewossda

Cho and Brennan (2025) Neuropsychologia

- **Procedure**: participants read each word a total of 36 times in each language (English and Korean) while their EEG is recorded
 - A total of nine runs with English and Korean blocks alternating orders
 - Each block = each word x 4 times

Analysis and Results

Words (four nouns and four verbs) and grammatical features (number and tense):

3

ERP analysis (300-600 ms and 600-800 ms)

Decoding

(Time-frequency analysis)

ERP analysis

 EEG data were epoched (-300 ~ 1,000 ms) and analyzed with ANOVAs in the time windows of 300-600 ms and 600-800 ms

Lexical

Grammatical

- Fixed effects: **Word type** (four levels for nouns and verbs, two levels for number and tense), **Hemisphere**, **Anterior-posterior orientation**
- Corrected for multiple comparisons

Results: ERP analysis

(A) Evoked responses of English nouns (Cz)

(B) Evoked responses of Korean nouns (Cz)

Words

 No statistical differences among nouns and verbs (both 300-600 ms and 600-800 ms) for both languages

-10

Results: ERP analysis

Number and tense

- No statistical differences for the number feature
- Korean past tense yielded more positive amplitudes in the anterior (p < 0.001) and central (p < 0.001) regions

Evoked responses of English singular and (B) Evoked responses of Korean singular and (A) plural nouns (Cz) plural nouns (Cz) 10 singular 10 singular plural plural ≧ ≧ -10-100.0 0.5 1.0 0.5 1.0 0.0 Evoked responses of English present and (D) Evoked responses of Korean present and (C) past verbs (Cz) past verbs (Cz) present 10 10 present past past ₹ ≧ -10-101.0 0.0 0.5 0.0 0.5 1.0 Time (s) Time (s)

Cho and Brennan (2025) Neuropsychologia

Decoding

- Epoched EEG data were trained with an LDA (linear discriminant analysis) classifier
- Data used for training and testing: 200 ms-long window moving by 20 ms intervals
- Within language: results based on five-fold cross validation
- **Between languages:** trained on one language and tested on the other
- Statistical testing: cluster-based permutation test

(A) Temporal decoding results of English nouns

(B) Temporal decoding results of Korean nouns

(D) Temporal decoding results of Korean verbs

1.0

Results: Withinlanguage decoding

Words (chance=0.25)

 Within-language decoding of nouns and verbs yielded above-chance accuracies in 0-300 ms

(C) Temporal decoding results of English verbs

Accuracy

(A) Temporal decoding results of English number

(B) Temporal decoding results of Korean number

Results: Withinlanguage decoding

Number and tense (chance = 0.5)

- Number: above chance in Korean -60-300 ms and 460-600 ms
- Tense: above chance in English (560-620 ms) and Korean (-40-40 ms)

(C) Temporal decoding results of English tense

(D) Temporal decoding results of Korean tense

Results: Betweenlanguages decoding

Words (chance=0.25)

No above-chance accuracies

(A) Temporal decoding results of English

Time (s)

Time (s)

(B) Temporal decoding results of Korean

Results: Betweenlanguages decoding

Number and tense (chance = 0.5)

- Number: above chance both directions in 500-600 ms
- Tense: no above-chance accuracies

(A) Temporal decoding results of English

to Korean number

Accuracy

(B) Temporal decoding results of Korean to English number

(D) Temporal decoding results of Korean to English tense

Cho and Brennan (2025) *Neurop*sychologia

• Within-language neural decoding is successful for nouns, verbs, and tense for both languages and for number for Korean

>Advantage of the multivariate analysis over traditional ERP analysis

• Within-language neural decoding is successful for nouns, verbs, and tense for both languages and for number for Korean

>Advantage of the multivariate analysis over traditional ERP analysis

➤The time window for lexical decoding generally overlaps for nouns and verbs, and for the two languages (0 – 500 ms)

It may reflect processing of low-level visual properties (~100 ms), lexicality (150-200 ms), and semantic properties (300-600 ms)

• Within-language neural decoding is successful for nouns, verbs, and tense for both languages and for number for Korean

>Advantage of the multivariate analysis over traditional ERP analysis

The time window for lexical decoding generally overlaps for nouns and verbs, and for the two languages (0 – 500 ms)

It may reflect processing of low-level visual properties (~100 ms), lexicality (150-200 ms), and semantic properties (300-600 ms)

Time windows for decoding of grammatical tense are different for the two languages

May be due to different processing mechanisms for inflectional suffixes (English) versus stem conjugation (Korean).

- **Between-language neural decoding** yields above-chance accuracies for number but not words and the tense feature
- Consistent with previous fMRI study that reports crosslinguistic similarities in processing number in English, Chinese and French (Dunagan et al., 2022)

- **Between-language neural decoding** yields above-chance accuracies for number but not words and the tense feature
- Consistent with previous fMRI study that reports crosslinguistic similarities in processing number in English, Chinese and French (Dunagan et al., 2022)
- Lexical items (nouns and verbs) in two languages may share some conceptual representations, but not to the extent for a classifier to learn patterns from for successful decoding from scalp EEG

Thank you!

jhcho@hongik.ac.kr

Study 1: Cho, J. & Brennan, J. R. (2025). Decoding of lexical items and grammatical features in EEG: A crosslinguistic study. *Neuropsychologia*. <u>https://doi.org/10.1016/j.neuropsychologia.2025.109150</u>.

Study 2: Cho, J. & Brennan, J. R. (2025). Cross-linguistic representation of prefixes for early and late bilinguals. *Bilingualism: Language and Cognition*. <u>https://doi.org/10.1017/S136672892400107X</u>.

Study 3: Cho, J., Pires, A., & Brennan, J. R. (2024). How large are root and affix priming effects in visual word recognition? Estimation from original data and a Bayesian meta-analysis. *Language, Cognition, and Neuroscience*. <u>https://doi.org/10.1080/23273798.2024.2384051</u>.

Jonathan Brennan

Arisio Pires